patch_litellm()Core
LiteLLM
Deterministic outputs
LiteLLM ModelResponse(Stream) objects have id and created_at fields that are generated dynamically. Even when we use cachy to cache the LLM response these dynamic fields create diffs which makes code review more challenging. The patches below ensure that id and created_at fields are fixed and won’t generate diffs.
patch_litellm
patch_litellm (seed=0)
Patch litellm.ModelResponseBase such that id and created are fixed.
Completion
LiteLLM provides an convenient unified interface for most big LLM providers. Because it’s so useful to be able to switch LLM providers with just one argument. We want to make it even easier to by adding some more convenience functions and classes.
This is very similar to our other wrapper libraries for popular AI providers: claudette (Anthropic), gaspard (Gemini), cosette (OpenAI).
# litellm._turn_on_debug()ms = ["gemini/gemini-3-pro-preview", "gemini/gemini-2.5-pro", "gemini/gemini-2.5-flash", "claude-sonnet-4-5", "openai/gpt-4.1"]
msg = [{'role':'user','content':'Hey there!', 'cache_control': {'type': 'ephemeral'}}]
for m in ms:
display(Markdown(f'**{m}:**'))
display(completion(m,msg))gemini/gemini-3-pro-preview:
Hey there! How is your day going?
I’m ready to help with whatever is on your mind—whether you have a question, need some creative inspiration, or just want to chat. What can I do for you today?
- id:
chatcmpl-xxx - model:
gemini-3-pro-preview - finish_reason:
stop - usage:
Usage(completion_tokens=179, prompt_tokens=4, total_tokens=183, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=132, rejected_prediction_tokens=None, text_tokens=47, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=4, image_tokens=None))
gemini/gemini-2.5-pro:
Hey there! 👋
How can I help you today?
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=917, prompt_tokens=4, total_tokens=921, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=905, rejected_prediction_tokens=None, text_tokens=12, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=4, image_tokens=None))
gemini/gemini-2.5-flash:
Hey there! How can I help you today?
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
stop - usage:
Usage(completion_tokens=427, prompt_tokens=4, total_tokens=431, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=417, rejected_prediction_tokens=None, text_tokens=10, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=4, image_tokens=None))
claude-sonnet-4-5:
Hey! How’s it going? What can I help you with today?
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
stop - usage:
Usage(completion_tokens=18, prompt_tokens=10, total_tokens=28, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
openai/gpt-4.1:
Hello! 😊 How can I help you today?
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
stop - usage:
Usage(completion_tokens=10, prompt_tokens=10, total_tokens=20, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
Messages formatting
Let’s start with making it easier to pass messages into litellm’s completion function (including images, and pdf files).
contents
contents (r)
Get message object from response r.
remove_cache_ckpts
remove_cache_ckpts (msg)
remove cache checkpoints and return msg.
mk_msg
mk_msg (content, role='user', cache=False, ttl=None)
Create a LiteLLM compatible message.
| Type | Default | Details | |
|---|---|---|---|
| content | Content: str, bytes (image), list of mixed content, or dict w ‘role’ and ‘content’ fields | ||
| role | str | user | Message role if content isn’t already a dict/Message |
| cache | bool | False | Enable Anthropic caching |
| ttl | NoneType | None | Cache TTL: ‘5m’ (default) or ‘1h’ |
Now we can use mk_msg to create different types of messages.
Simple text:
msg = mk_msg("hey")
msg{'role': 'user', 'content': 'hey'}
Which can be passed to litellm’s completion function like this:
model = ms[1] # use 2.5-pro, 3-pro is very slow even to run tests as of makingres = completion(model, [msg])
resHey there! How can I help you today?
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=769, prompt_tokens=2, total_tokens=771, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=759, rejected_prediction_tokens=None, text_tokens=10, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=2, image_tokens=None))
We’ll add a little shortcut to make examples and testing easier here:
def c(msgs, m=model, **kw):
msgs = [msgs] if isinstance(msgs,dict) else listify(msgs)
return completion(m, msgs, **kw)c(msg)Hey there! How can I help you today?
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=769, prompt_tokens=2, total_tokens=771, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=759, rejected_prediction_tokens=None, text_tokens=10, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=2, image_tokens=None))
Lists w just one string element are flattened for conciseness:
test_eq(mk_msg("hey"), mk_msg(["hey"]))(LiteLLM ignores these fields when sent to other providers)
Text and images:
img_fn = Path('samples/puppy.jpg')
Image(filename=img_fn, width=200)
msg = mk_msg(['hey what in this image?',img_fn.read_bytes()])
print(json.dumps(msg,indent=1)[:200]+"..."){
"role": "user",
"content": [
{
"type": "text",
"text": "hey what in this image?"
},
{
"type": "image_url",
"image_url": "...
c(msg)Of course! This is an adorable and heartwarming image of a Cavalier King Charles Spaniel puppy.
Here’s a more detailed breakdown of what’s in the picture:
- The Puppy: The main subject is a young puppy, most likely a Cavalier King Charles Spaniel of the “Blenheim” (chestnut and white) coloring. It has large, dark, expressive eyes, long, floppy brown ears, and a soft, fluffy coat. The puppy is lying down in the grass and looking directly at the camera with a curious and innocent expression.
- The Flowers: To the left of the puppy is a dense cluster of small, purple, daisy-like flowers with yellow centers. These appear to be a type of Aster, like Michaelmas daisies.
- The Setting: The scene is outdoors on a lawn of green grass. The puppy seems to be peeking out from beside the bush of flowers. The background is softly out of focus, which helps the puppy stand out as the main subject.
Overall, it’s a very charming and beautifully composed photograph that captures the sweetness and innocence of puppyhood.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=1517, prompt_tokens=265, total_tokens=1782, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=1279, rejected_prediction_tokens=None, text_tokens=238, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=7, image_tokens=None))
Let’s also demonstrate this for PDFs
pdf_fn = Path('samples/solveit.pdf')
msg = mk_msg(['Who is the author of this pdf?', pdf_fn.read_bytes()])
c(msg)Based on the text in the PDF, the author is Jeremy Howard.
He introduces himself directly with the line: “Hi, I’m Jeremy Howard, from fast.ai”.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=502, prompt_tokens=267, total_tokens=769, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=464, rejected_prediction_tokens=None, text_tokens=38, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=9, image_tokens=None))
Some models like Gemini support audio and video:
wav_data = httpx.get("https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav").content
# Audio(wav_data) # uncomment to previewmsg = mk_msg(['What is this audio saying?', wav_data])
completion(ms[1], [msg])The audio says: “The sun rises in the east and sets in the west. This simple fact has been observed by humans for thousands of years.”
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=525, prompt_tokens=230, total_tokens=755, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=495, rejected_prediction_tokens=None, text_tokens=30, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=223, cached_tokens=None, text_tokens=7, image_tokens=None))
vid_data = httpx.get("https://storage.googleapis.com/github-repo/img/gemini/multimodality_usecases_overview/pixel8.mp4").contentmsg = mk_msg(['Concisely, what is happening in this video?', vid_data])
completion(ms[1], [msg])This video is an advertisement for the Google Pixel 8 Pro, showcasing its low-light video capabilities. A Tokyo-based photographer, Saeka Shimada, uses the phone’s “Video Boost” and “Night Sight” features to capture vibrant and detailed video footage of the city’s atmospheric backstreets at night.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=182, prompt_tokens=17402, total_tokens=17584, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=117, rejected_prediction_tokens=None, text_tokens=65, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=1873, cached_tokens=None, text_tokens=12, image_tokens=None))
Caching
Some providers such as Anthropic require manually opting into caching. Let’s try it:
def cpr(i): return f'{i} '*1024 + 'This is a caching test. Report back only what number you see repeated above.'disable_cachy()# msg = mk_msg(cpr(1), cache=True)
# res = c(msg, ms[2])
# resAnthropic has a maximum of 4 cache checkpoints, so we remove previous ones as we go:
# res = c([remove_cache_ckpts(msg), mk_msg(res), mk_msg(cpr(2), cache=True)], ms[2])
# resWe see that the first message was cached, and this extra message has been written to cache:
# res.usage.prompt_tokens_detailsWe can add a bunch of large messages in a loop to see how the number of cached tokens used grows.
We do this for 25 times to ensure it still works for more than >20 content blocks, which is a known anthropic issue.
The code below is commented by default, because it’s slow. Please uncomment when working on caching.
# h = []
# msg = mk_msg(cpr(1), cache=True)
# for o in range(2,25):
# h += [remove_cache_ckpts(msg), mk_msg(res)]
# msg = mk_msg(cpr(o), cache=True)
# res = c(h+[msg])
# detls = res.usage.prompt_tokens_details
# print(o, detls.cached_tokens, detls.cache_creation_tokens, end='; ')enable_cachy()Reconstructing formatted outputs
Lisette can call multiple tools in a loop. Further down this notebook, we’ll provide convenience functions for formatting such a sequence of toolcalls and responses into one formatted output string.
For now, we’ll show an example and show how to transform such a formatted output string back into a valid LiteLLM history.
fmt_outp = '''
I'll solve this step-by-step, using parallel calls where possible.
<details class='tool-usage-details'>
```json
{
"id": "toolu_01KjnQH2Nsz2viQ7XYpLW3Ta",
"call": { "function": "simple_add", "arguments": { "a": 10, "b": 5 } },
"result": "15"
}
```
</details>
<details class='tool-usage-details'>
```json
{
"id": "toolu_01Koi2EZrGZsBbnQ13wuuvzY",
"call": { "function": "simple_add", "arguments": { "a": 2, "b": 1 } },
"result": "3"
}
```
</details>
Now I need to multiply 15 * 3 before I can do the final division:
<details class='tool-usage-details'>
```json
{
"id": "toolu_0141NRaWUjmGtwxZjWkyiq6C",
"call": { "function": "multiply", "arguments": { "a": 15, "b": 3 } },
"result": "45"
}
```
</details>
'''We can split into chunks of (text,toolstr,json):
sp = re_tools.split(fmt_outp)
for o in list(chunked(sp, 3, pad=True)): print('- ', o)- ["\nI'll solve this step-by-step, using parallel calls where possible.\n\n", '<details class=\'tool-usage-details\'>\n\n```json\n{\n "id": "toolu_01KjnQH2Nsz2viQ7XYpLW3Ta",\n "call": { "function": "simple_add", "arguments": { "a": 10, "b": 5 } },\n "result": "15"\n}\n```\n\n</details>', '{\n "id": "toolu_01KjnQH2Nsz2viQ7XYpLW3Ta",\n "call": { "function": "simple_add", "arguments": { "a": 10, "b": 5 } },\n "result": "15"\n}']
- ['\n\n', '<details class=\'tool-usage-details\'>\n\n```json\n{\n "id": "toolu_01Koi2EZrGZsBbnQ13wuuvzY",\n "call": { "function": "simple_add", "arguments": { "a": 2, "b": 1 } },\n "result": "3"\n}\n```\n\n</details>', '{\n "id": "toolu_01Koi2EZrGZsBbnQ13wuuvzY",\n "call": { "function": "simple_add", "arguments": { "a": 2, "b": 1 } },\n "result": "3"\n}']
- ['\n\nNow I need to multiply 15 * 3 before I can do the final division:\n\n', '<details class=\'tool-usage-details\'>\n\n```json\n{\n "id": "toolu_0141NRaWUjmGtwxZjWkyiq6C",\n "call": { "function": "multiply", "arguments": { "a": 15, "b": 3 } },\n "result": "45"\n}\n```\n\n</details>', '{\n "id": "toolu_0141NRaWUjmGtwxZjWkyiq6C",\n "call": { "function": "multiply", "arguments": { "a": 15, "b": 3 } },\n "result": "45"\n}']
- ['\n', None, None]
fmt2hist
fmt2hist (outp:str)
Transform a formatted output into a LiteLLM compatible history
See how we can turn that one formatted output string back into a list of Messages:
from pprint import pprinth = fmt2hist(fmt_outp)
pprint(h)[Message(content="I'll solve this step-by-step, using parallel calls where possible.", role='assistant', tool_calls=[ChatCompletionMessageToolCall(function=Function(arguments='{"a":10,"b":5}', name='simple_add'), id='toolu_4_cGgsIJTKyin2__2CwHzQ', type='function')], function_call=None, provider_specific_fields=None),
{'content': '15',
'name': 'simple_add',
'role': 'tool',
'tool_call_id': 'toolu_01KjnQH2Nsz2viQ7XYpLW3Ta'},
Message(content='', role='assistant', tool_calls=[ChatCompletionMessageToolCall(function=Function(arguments='{"a":2,"b":1}', name='simple_add'), id='toolu_9yi0_kJITjqKXS80a6qUVQ', type='function')], function_call=None, provider_specific_fields=None),
{'content': '3',
'name': 'simple_add',
'role': 'tool',
'tool_call_id': 'toolu_01Koi2EZrGZsBbnQ13wuuvzY'},
Message(content='Now I need to multiply 15 * 3 before I can do the final division:', role='assistant', tool_calls=[ChatCompletionMessageToolCall(function=Function(arguments='{"a":15,"b":3}', name='multiply'), id='toolu_6xFns2epQ3i8ZcHlguLmYg', type='function')], function_call=None, provider_specific_fields=None),
{'content': '45',
'name': 'multiply',
'role': 'tool',
'tool_call_id': 'toolu_0141NRaWUjmGtwxZjWkyiq6C'},
Message(content='.', role='assistant', tool_calls=None, function_call=None, provider_specific_fields=None)]
mk_msgs
We will skip tool use blocks and tool results during caching
Now lets make it easy to provide entire conversations:
mk_msgs
mk_msgs (msgs, cache=False, cache_idxs=[-1], ttl=None)
Create a list of LiteLLM compatible messages.
| Type | Default | Details | |
|---|---|---|---|
| msgs | List of messages (each: str, bytes, list, or dict w ‘role’ and ‘content’ fields) | ||
| cache | bool | False | Enable Anthropic caching |
| cache_idxs | list | [-1] | Cache breakpoint idxs |
| ttl | NoneType | None | Cache TTL: ‘5m’ (default) or ‘1h’ |
With mk_msgs you can easily provide a whole conversation:
msgs = mk_msgs(['Hey!',"Hi there!","How are you?","I'm doing fine and you?"])
msgs[{'role': 'user', 'content': 'Hey!'},
{'role': 'assistant', 'content': 'Hi there!'},
{'role': 'user', 'content': 'How are you?'},
{'role': 'assistant', 'content': "I'm doing fine and you?"}]
By defualt the last message will be cached when cache=True:
msgs = mk_msgs(['Hey!',"Hi there!","How are you?","I'm doing fine and you?"], cache=True)
msgs[{'role': 'user', 'content': 'Hey!'},
{'role': 'assistant', 'content': 'Hi there!'},
{'role': 'user', 'content': 'How are you?'},
{'role': 'assistant',
'content': [{'type': 'text',
'text': "I'm doing fine and you?",
'cache_control': {'type': 'ephemeral'}}]}]
test_eq('cache_control' in msgs[-1]['content'][0], True)Alternatively, users can provide custom cache_idxs. Tool call blocks and results are skipped during caching:
msgs = mk_msgs(['Hello!','Hi! How can I help you?','Call some functions!',fmt_outp], cache=True, cache_idxs=[0,-2,-1])
msgs[{'role': 'user',
'content': [{'type': 'text',
'text': 'Hello!',
'cache_control': {'type': 'ephemeral'}}]},
{'role': 'assistant', 'content': 'Hi! How can I help you?'},
{'role': 'user',
'content': [{'type': 'text',
'text': 'Call some functions!',
'cache_control': {'type': 'ephemeral'}}]},
Message(content="I'll solve this step-by-step, using parallel calls where possible.", role='assistant', tool_calls=[ChatCompletionMessageToolCall(function=Function(arguments='{"a":10,"b":5}', name='simple_add'), id='toolu_98G9h02lRwmUcT1gyKcGOQ', type='function')], function_call=None, provider_specific_fields=None),
{'role': 'tool',
'tool_call_id': 'toolu_01KjnQH2Nsz2viQ7XYpLW3Ta',
'name': 'simple_add',
'content': '15'},
Message(content='', role='assistant', tool_calls=[ChatCompletionMessageToolCall(function=Function(arguments='{"a":2,"b":1}', name='simple_add'), id='toolu_5EPfeJVYRn_bqR_vegJCBA', type='function')], function_call=None, provider_specific_fields=None),
{'role': 'tool',
'tool_call_id': 'toolu_01Koi2EZrGZsBbnQ13wuuvzY',
'name': 'simple_add',
'content': '3'},
Message(content='Now I need to multiply 15 * 3 before I can do the final division:', role='assistant', tool_calls=[ChatCompletionMessageToolCall(function=Function(arguments='{"a":15,"b":3}', name='multiply'), id='toolu_I6dxGoEzSHa369zZ6HoWEw', type='function')], function_call=None, provider_specific_fields=None),
{'role': 'tool',
'tool_call_id': 'toolu_0141NRaWUjmGtwxZjWkyiq6C',
'name': 'multiply',
'content': '45'},
Message(content=[{'type': 'text', 'text': '.', 'cache_control': {'type': 'ephemeral'}}], role='assistant', tool_calls=None, function_call=None, provider_specific_fields=None)]
test_eq('cache_control' in msgs[0]['content'][0], True)
test_eq('cache_control' in msgs[2]['content'][0], True) # shifted idxs to skip tools
test_eq('cache_control' in msgs[-1]['content'][0], True)Who’s speaking at when is automatically inferred. Even when there are multiple tools being called in parallel (which LiteLLM supports!).
msgs = mk_msgs(['Tell me the weather in Paris and Rome',
'Assistant calls weather tool two times',
{'role':'tool','content':'Weather in Paris is ...'},
{'role':'tool','content':'Weather in Rome is ...'},
'Assistant returns weather',
'Thanks!'])
msgs[{'role': 'user', 'content': 'Tell me the weather in Paris and Rome'},
{'role': 'assistant', 'content': 'Assistant calls weather tool two times'},
{'role': 'tool', 'content': 'Weather in Paris is ...'},
{'role': 'tool', 'content': 'Weather in Rome is ...'},
{'role': 'assistant', 'content': 'Assistant returns weather'},
{'role': 'user', 'content': 'Thanks!'}]
For ease of use, if msgs is not already in a list, it will automatically be wrapped inside one. This way you can pass a single prompt into mk_msgs and get back a LiteLLM compatible msg history.
msgs = mk_msgs("Hey")
msgs[{'role': 'user', 'content': 'Hey'}]
msgs = mk_msgs(['Hey!',"Hi there!","How are you?","I'm fine, you?"])
msgs[{'role': 'user', 'content': 'Hey!'},
{'role': 'assistant', 'content': 'Hi there!'},
{'role': 'user', 'content': 'How are you?'},
{'role': 'assistant', 'content': "I'm fine, you?"}]
However, beware that if you use mk_msgs for a single message, consisting of multiple parts. Then you should be explicit, and make sure to wrap those multiple messages in two lists:
- One list to show that they belong together in one message (the inner list).
- Another, because mk_msgs expects a list of multiple messages (the outer list).
This is common when working with images for example:
msgs = mk_msgs([['Whats in this img?',img_fn.read_bytes()]])
print(json.dumps(msgs,indent=1)[:200]+"...")[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this img?"
},
{
"type": "image_url",
"image_url": "...
Streaming
LiteLLM supports streaming responses. That’s really useful if you want to show intermediate results, instead of having to wait until the whole response is finished.
We create this helper function that returns the entire response at the end of the stream. This is useful when you want to store the whole response somewhere after having displayed the intermediate results.
stream_with_complete
stream_with_complete (gen, postproc=<function noop>)
Extend streaming response chunks with the complete response
r = c(mk_msgs("Hey!"), stream=True)
r2 = SaveReturn(stream_with_complete(r))for o in r2:
cts = o.choices[0].delta.content
if cts: print(cts, end='')Hey there! How can I help you today?
r2.valueHey there! How can I help you today?
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=540, prompt_tokens=3, total_tokens=543, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
Tools
lite_mk_func
lite_mk_func (f)
def simple_add(
a: int, # first operand
b: int=0 # second operand
) -> int:
"Add two numbers together"
return a + btoolsc = lite_mk_func(simple_add)
toolsc{'type': 'function',
'function': {'name': 'simple_add',
'description': 'Add two numbers together\n\nReturns:\n- type: integer',
'parameters': {'type': 'object',
'properties': {'a': {'type': 'integer', 'description': 'first operand'},
'b': {'type': 'integer', 'description': 'second operand', 'default': 0}},
'required': ['a']}}}
tmsg = mk_msg("What is 5478954793+547982745? How about 5479749754+9875438979? Always use tools for calculations, and describe what you'll do before using a tool. Where multiple tool calls are required, do them in a single response where possible. ")
r = c(tmsg, tools=[toolsc])display(r)I will use the simple_add tool to perform the two requested calculations.
🔧 simple_add({“b”: 547982745, “a”: 5478954793})
🔧 simple_add({“a”: 5479749754, “b”: 9875438979})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=715, prompt_tokens=149, total_tokens=864, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=623, rejected_prediction_tokens=None, text_tokens=92, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=149, image_tokens=None))
A tool response can be a string or a list of tool blocks (e.g., an image url block). To allow users to specify if a response should not be immediately stringified, we provide the ToolResponse datatype users can wrap their return statement in.
ToolResponse
ToolResponse (content:list[str,str])
tcs = [_lite_call_func(o, [toolsc], ns=globals()) for o in r.choices[0].message.tool_calls]
tcs[{'tool_call_id': 'call_GEbUJMF8QnmjxmEvSCaGcw',
'role': 'tool',
'name': 'simple_add',
'content': '6026937538'},
{'tool_call_id': 'call_-L0Ew0AhTveMpaWhnk1uPA',
'role': 'tool',
'name': 'simple_add',
'content': '15355188733'}]
Test tool calls that were not in tool_schemas are caught:
fake_tc = ChatCompletionMessageToolCall(index=0, function=Function(name='hallucinated_tool'),id='_', type='function')
test_eq(_lite_call_func(fake_tc, ns=globals(), tool_schemas=[toolsc])['content'],"Tool not defined in tool_schemas: hallucinated_tool")
test_fail(_lite_call_func(fake_tc, ns=globals(), tool_schemas=None)['content'],"Tool not defined in tool_schemas: hallucinated_tool")Test tool calls that were not in tool_choice are caught:
def delta_text(msg):
"Extract printable content from streaming delta, return None if nothing to print"
c = msg.choices[0]
if not c: return c
if not hasattr(c,'delta'): return None #f'{c}'
delta = c.delta
if delta.content: return delta.content
if delta.tool_calls:
res = ''.join(f"🔧 {tc.function.name}" for tc in delta.tool_calls if tc.id and tc.function.name)
if res: return f'\n{res}\n'
if hasattr(delta,'reasoning_content'): return '🧠' if delta.reasoning_content else '\n\n'
return Noner = c(tmsg, stream=True, tools=[toolsc])
r2 = SaveReturn(stream_with_complete(r))
for o in r2: print(delta_text(o) or '', end='')I will use the `simple_add` tool to perform the two requested calculations. First, I'll add 5478954793 and 547982745. Then, I'll add 5479749754 and 9875438979.
🔧 simple_add
🔧 simple_add
r2.valueI will use the simple_add tool to perform the two requested calculations. First, I’ll add 5478954793 and 547982745. Then, I’ll add 5479749754 and 9875438979.
🔧 simple_add({“b”: 547982745, “a”: 5478954793})
🔧 simple_add({“b”: 9875438979, “a”: 5479749754})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=613, prompt_tokens=149, total_tokens=762, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
msg = mk_msg("Solve this complex math problem: What is the derivative of x^3 + 2x^2 - 5x + 1?")
r = c(msg, stream=True, reasoning_effort="low")
r2 = SaveReturn(stream_with_complete(r))
for o in r2: print(delta_text(o) or '', end='')🧠🧠🧠🧠Of course! Let's solve this step-by-step. While it might seem complex, it's a great example of applying a fundamental rule of calculus.
The derivative of **x³ + 2x² - 5x + 1** is:
### **3x² + 4x - 5**
---
### Step-by-Step Solution:
To solve this, we use a core rule in calculus called the **Power Rule**, and we apply it to each term of the expression one by one.
#### The Key Rule: The Power Rule
The Power Rule states that the derivative of **xⁿ** is **n * xⁿ⁻¹**.
In simple terms:
1. Bring the exponent down and multiply it by the front.
2. Subtract 1 from the original exponent.
Let's apply this to each part of your expression: `x³`, `2x²`, `-5x`, and `1`.
#### 1. Derivative of x³
* The exponent (`n`) is 3.
* Bring the `3` down in front: `3x`
* Subtract 1 from the exponent: `3 - 1 = 2`
* Result: **3x²**
#### 2. Derivative of 2x²
* First, look at the `x²` part. The exponent (`n`) is 2.
* Bring the `2` down and multiply it by the existing coefficient (`2`): `2 * 2x`
* Subtract 1 from the exponent: `2 - 1 = 1`
* Result: `4x¹`, which is simply **4x**
#### 3. Derivative of -5x
* You can think of `-5x` as `-5x¹`.
* The exponent (`n`) is 1.
* Bring the `1` down and multiply it by the coefficient (`-5`): `1 * -5x`
* Subtract 1 from the exponent: `1 - 1 = 0`
* Result: `-5x⁰`. Any number to the power of 0 is 1, so this becomes `-5 * 1`, which is **-5**.
#### 4. Derivative of +1
* The derivative of any constant (a number by itself) is always **0**. This is because a constant doesn't change, and the derivative measures the rate of change.
* Result: **0**
---
### Putting It All Together
Now, we just combine the derivatives of each term:
**3x²** + **4x** - **5** + **0**
Which simplifies to your final answer:
### **3x² + 4x - 5**
r2.valueOf course! Let’s solve this step-by-step. While it might seem complex, it’s a great example of applying a fundamental rule of calculus.
The derivative of x³ + 2x² - 5x + 1 is:
3x² + 4x - 5
Step-by-Step Solution:
To solve this, we use a core rule in calculus called the Power Rule, and we apply it to each term of the expression one by one.
The Key Rule: The Power Rule
The Power Rule states that the derivative of xⁿ is n * xⁿ⁻¹.
In simple terms: 1. Bring the exponent down and multiply it by the front. 2. Subtract 1 from the original exponent.
Let’s apply this to each part of your expression: x³, 2x², -5x, and 1.
1. Derivative of x³
- The exponent (
n) is 3. - Bring the
3down in front:3x - Subtract 1 from the exponent:
3 - 1 = 2 - Result: 3x²
2. Derivative of 2x²
- First, look at the
x²part. The exponent (n) is 2. - Bring the
2down and multiply it by the existing coefficient (2):2 * 2x - Subtract 1 from the exponent:
2 - 1 = 1 - Result:
4x¹, which is simply 4x
3. Derivative of -5x
- You can think of
-5xas-5x¹. - The exponent (
n) is 1. - Bring the
1down and multiply it by the coefficient (-5):1 * -5x - Subtract 1 from the exponent:
1 - 1 = 0 - Result:
-5x⁰. Any number to the power of 0 is 1, so this becomes-5 * 1, which is -5.
4. Derivative of +1
- The derivative of any constant (a number by itself) is always 0. This is because a constant doesn’t change, and the derivative measures the rate of change.
- Result: 0
Putting It All Together
Now, we just combine the derivatives of each term:
3x² + 4x - 5 + 0
Which simplifies to your final answer:
3x² + 4x - 5
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=1332, prompt_tokens=29, total_tokens=1361, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=302, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
Structured Outputs
structured
structured (m:str, msgs:list, tool:Callable, messages:List=[], timeout:Union[float,str,openai.Timeout,NoneType]=None, temperature:Optional[float]=None, top_p:Optional[float]=None, n:Optional[int]=None, stream:Optional[bool]=None, stream_options:Optional[dict]=None, stop=None, max_completion_tokens:Optional[int]=None, max_tokens:Optional[int]=None, modalities:Optional[List[Literal['text','audio']]]=None, pred iction:Optional[openai.types.chat.chat_completion_prediction_ content_param.ChatCompletionPredictionContentParam]=None, aud io:Optional[openai.types.chat.chat_completion_audio_param.Cha tCompletionAudioParam]=None, presence_penalty:Optional[float]=None, frequency_penalty:Optional[float]=None, logit_bias:Optional[dict]=None, user:Optional[str]=None, reas oning_effort:Optional[Literal['none','minimal','low','medium' ,'high','xhigh','default']]=None, verbosity:Optional[Literal['low','medium','high']]=None, resp onse_format:Union[dict,Type[pydantic.main.BaseModel],NoneType ]=None, seed:Optional[int]=None, tools:Optional[List]=None, tool_choice:Union[str,dict,NoneType]=None, logprobs:Optional[bool]=None, top_logprobs:Optional[int]=None, parallel_tool_calls:Optional[bool]=None, web_search_options:O ptional[litellm.types.llms.openai.OpenAIWebSearchOptions]=Non e, deployment_id=None, extra_headers:Optional[dict]=None, safety_identifier:Optional[str]=None, service_tier:Optional[str]=None, functions:Optional[List]=None, function_call:Optional[str]=None, base_url:Optional[str]=None, api_version:Optional[str]=None, api_key:Optional[str]=None, model_list:Optional[list]=None, t hinking:Optional[litellm.types.llms.anthropic.AnthropicThinki ngParam]=None, shared_session:Optional[ForwardRef('ClientSession')]=None)
Return the value of the tool call (generally used for structured outputs)
| Type | Default | Details | |
|---|---|---|---|
| m | str | LiteLLM model string | |
| msgs | list | List of messages | |
| tool | Callable | Tool to be used for creating the structured output (class, dataclass or Pydantic, function, etc) | |
| messages | List | [] | Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create |
| timeout | Union | None | |
| temperature | Optional | None | |
| top_p | Optional | None | |
| n | Optional | None | |
| stream | Optional | None | |
| stream_options | Optional | None | |
| stop | NoneType | None | |
| max_completion_tokens | Optional | None | |
| max_tokens | Optional | None | |
| modalities | Optional | None | |
| prediction | Optional | None | |
| audio | Optional | None | |
| presence_penalty | Optional | None | |
| frequency_penalty | Optional | None | |
| logit_bias | Optional | None | |
| user | Optional | None | |
| reasoning_effort | Optional | None | openai v1.0+ new params |
| verbosity | Optional | None | |
| response_format | Union | None | |
| seed | Optional | None | |
| tools | Optional | None | |
| tool_choice | Union | None | |
| logprobs | Optional | None | |
| top_logprobs | Optional | None | |
| parallel_tool_calls | Optional | None | |
| web_search_options | Optional | None | |
| deployment_id | NoneType | None | |
| extra_headers | Optional | None | |
| safety_identifier | Optional | None | |
| service_tier | Optional | None | |
| functions | Optional | None | soon to be deprecated params by OpenAI |
| function_call | Optional | None | |
| base_url | Optional | None | set api_base, api_version, api_key |
| api_version | Optional | None | |
| api_key | Optional | None | |
| model_list | Optional | None | pass in a list of api_base,keys, etc. |
| thinking | Optional | None | Optional liteLLM function params |
| shared_session | Optional | None | Session management |
class President:
"Information about a president of the United States"
def __init__(
self,
first:str, # first name
last:str, # last name
spouse:str, # name of spouse
years_in_office:str, # format: "{start_year}-{end_year}"
birthplace:str, # name of city
birth_year:int # year of birth, `0` if unknown
):
assert re.match(r'\d{4}-\d{4}', years_in_office), "Invalid format: `years_in_office`"
store_attr()
__repr__ = basic_repr('first, last, spouse, years_in_office, birthplace, birth_year')for m in ms[1:]:
r = structured(m, [mk_msg("Tell me something about the third president of the USA.")], President)
test_eq(r.first, 'Thomas'); test_eq(r.last, 'Jefferson')Search
LiteLLM provides search, not via tools, but via the special web_search_options param.
Note: Not all models support web search. LiteLLM’s supports_web_search field should indicate this, but it’s unreliable for some models like claude-sonnet-4-20250514. Checking both supports_web_search and search_context_cost_per_query provides more accurate detection.
for m in ms: print(m, _has_search(m))gemini/gemini-3-pro-preview True
gemini/gemini-2.5-pro True
gemini/gemini-2.5-flash True
claude-sonnet-4-5 True
openai/gpt-4.1 False
When search is supported it can be used like this:
smsg = mk_msg("Search the web and tell me very briefly about otters")
r = c(smsg, web_search_options={"search_context_size": "low"}) # or 'medium' / 'high'
rOtters are carnivorous mammals known for their long, slender bodies and playful nature. These semi-aquatic animals are well-adapted for life in and out of water, with dense fur to keep them warm, webbed feet for swimming, and the ability to hold their breath underwater. There are 14 known species of otters, which can be found in a variety of aquatic habitats on every continent except Australia and Antarctica.
The diet of an otter primarily consists of fish and aquatic invertebrates like crayfish, crabs, and frogs. Sea otters are particularly known for eating marine invertebrates such as sea urchins and clams, and famously use rocks as tools to crack open shells. Due to a high metabolism, otters need to eat a significant portion of their body weight each day.
Otters exhibit a range of social behaviors. While some species, like river otters, can be solitary, others live in groups. They are known for their playful antics, such as sliding down riverbanks, which is believed to strengthen social bonds and improve hunting skills. Otters communicate through a variety of vocalizations, including chirps, whistles, and growls. They build dens, called holts, in locations like tree roots or rock cavities near the water’s edge.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=405, prompt_tokens=12, total_tokens=501, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=124, rejected_prediction_tokens=None, text_tokens=281, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=12, image_tokens=None))
Citations
Next, lets handle Anthropic’s search citations.
When not using streaming, all citations are placed in a separate key in the response:
r['vertex_ai_grounding_metadata'][0].keys()dict_keys(['searchEntryPoint', 'groundingChunks', 'groundingSupports', 'webSearchQueries'])
r['vertex_ai_grounding_metadata'][0]['webSearchQueries']['otters overview', 'what do otters eat', 'otter behavior']
Web search results:
r['vertex_ai_grounding_metadata'][0]['groundingChunks'][:3][{'web': {'uri': 'https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQF69rEsDddUtk9lG0x8ZmbaE2uuHIRj2-MAnGmIUO4mBV_Z3uWIrQjnjeYTcoMN4QzKaYyhugDv_wxOZMOvQ9HwTESwDBVdxu1uRGl_A8YohFaS0N4XJ8PelV24HbU=',
'title': 'wikipedia.org'}},
{'web': {'uri': 'https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQELDMRlV4E0WSmc0lhyqLNxB5uXIPsdaMJ4SYZD7lRHferNH7po1le8Fd8switCABuG6XhyNsiEt_GtIs8cJA2u38kdmZ6Prf5hHleOX1R3S3r5nWkP0CLA6RxWrgM3zyWm',
'title': 'britannica.com'}},
{'web': {'uri': 'https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGTwXijzT-feWaDAFt54TZfCbRkw5hVeWohUkex89NkhYhXJi2rZdRKEp8wnEeiUyLw3j-RPiZo3vnCK7sI6Smm6iyNan3RDkTrs427MiQJjsUxxv7gWOHaGVe59hKrsC2QxRqB8oRKj8SFt5AvQ3h4vjNrHOyoiQ==',
'title': 'crittercarewildlife.org'}}]
Citations in gemini:
r['vertex_ai_grounding_metadata'][0]['groundingSupports'][:3][{'segment': {'endIndex': 87,
'text': 'Otters are carnivorous mammals known for their long, slender bodies and playful nature.'},
'groundingChunkIndices': [0, 1]},
{'segment': {'startIndex': 88,
'endIndex': 270,
'text': 'These semi-aquatic animals are well-adapted for life in and out of water, with dense fur to keep them warm, webbed feet for swimming, and the ability to hold their breath underwater.'},
'groundingChunkIndices': [0, 1, 2]},
{'segment': {'startIndex': 271,
'endIndex': 412,
'text': 'There are 14 known species of otters, which can be found in a variety of aquatic habitats on every continent except Australia and Antarctica.'},
'groundingChunkIndices': [0, 2]}]
# r.choices[0].message.provider_specific_fields['citations'][0]However, when streaming the results are not captured this way. Instead, we provide this helper function that adds the citation to the content field in markdown format:
cite_footnotes
cite_footnotes (stream_list)
Add markdown footnote citations to stream deltas
cite_footnote
cite_footnote (msg)
r = list(c(smsg, ms[2], stream=True, web_search_options={"search_context_size": "low"}))
cite_footnotes(r)
stream_chunk_builder(r)Otters are carnivorous mammals belonging to the subfamily Lutrinae, part of the weasel family (Mustelidae). There are 13 extant species, all of which are semiaquatic, inhabiting both freshwater and marine environments across nearly every continent.
They are characterized by their long, slim, and streamlined bodies, short limbs, and powerful webbed feet, which make them excellent swimmers. Otters possess dense, waterproof fur with an insulating undercoat, crucial for staying warm in cold waters. Their diet primarily consists of fish, but they are opportunistic hunters and also consume crustaceans, frogs, birds, and other small prey, depending on the species and habitat. Otters are also known for their playful nature, engaging in activities like sliding into water and manipulating small stones.
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
stop - usage:
Usage(completion_tokens=432, prompt_tokens=12, total_tokens=444, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
Chat
LiteLLM is pretty bare bones. It doesnt keep track of conversation history or what tools have been added in the conversation so far.
So lets make a Claudette style wrapper so we can do streaming, toolcalling, and toolloops without problems.
When the tool uses are about to be exhausted it is important to alert the AI so that it knows to use its final steps for communicating the user current progress and next steps
Chat
Chat (model:str, sp='', temp=0, search=False, tools:list=None, hist:list=None, ns:Optional[dict]=None, cache=False, cache_idxs:list=[-1], ttl=None, api_base=None, api_key=None)
LiteLLM chat client.
| Type | Default | Details | |
|---|---|---|---|
| model | str | LiteLLM compatible model name | |
| sp | str | System prompt | |
| temp | int | 0 | Temperature |
| search | bool | False | Search (l,m,h), if model supports it |
| tools | list | None | Add tools |
| hist | list | None | Chat history |
| ns | Optional | None | Custom namespace for tool calling |
| cache | bool | False | Anthropic prompt caching |
| cache_idxs | list | [-1] | Anthropic cache breakpoint idxs, use 0 for sys prompt if provided |
| ttl | NoneType | None | Anthropic prompt caching ttl |
| api_base | NoneType | None | API base URL for custom providers |
| api_key | NoneType | None | API key for custom providers |
web_search is now included in tool_calls the internal LLM translation is correctly handled thanks to the fix here but the server side tools still need to be filtered out from tool_calls in our own toolloop.
Chat.__call__
Chat.__call__ (msg=None, prefill=None, temp=None, think=None, search=None, stream=False, max_steps=2, final_prompt={'role': 'user', 'content': 'You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed.'}, return_all=False, step=1, tool_choice=None)
Main call method - handles streaming vs non-streaming
| Type | Default | Details | |
|---|---|---|---|
| msg | NoneType | None | Message str, or list of multiple message parts |
| prefill | NoneType | None | Prefill AI response if model supports it |
| temp | NoneType | None | Override temp set on chat initialization |
| think | NoneType | None | Thinking (l,m,h) |
| search | NoneType | None | Override search set on chat initialization (l,m,h) |
| stream | bool | False | Stream results |
| max_steps | int | 2 | Maximum number of tool calls |
| final_prompt | dict | {‘role’: ‘user’, ‘content’: ‘You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed.’} | Final prompt when tool calls have ran out |
| return_all | bool | False | Returns all intermediate ModelResponses if not streaming and has tool calls |
| step | int | 1 | |
| tool_choice | NoneType | None |
@patch(as_prop=True)
def cost(self: Chat):
"Total cost of all responses in conversation history"
return sum(getattr(r, '_hidden_params', {}).get('response_cost') or 0
for r in self.h if hasattr(r, 'choices'))Chat.print_hist
Chat.print_hist ()
Print each message on a different line
Examples
History tracking
for m in ms[1:]:
chat = Chat(m)
chat("Hey my name is Rens")
r = chat("Whats my name")
test_eq('Rens' in contents(r).content, True)
rYour name is Rens!
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
stop - usage:
Usage(completion_tokens=6, prompt_tokens=41, total_tokens=47, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
See now we keep track of history!
History is stored in the hist attribute:
chat.hist[{'role': 'user', 'content': 'Hey my name is Rens'},
Message(content='Hi Rens! Nice to meet you. How can I help you today? 😊', role='assistant', tool_calls=None, function_call=None, provider_specific_fields={'refusal': None}, annotations=[]),
{'role': 'user', 'content': 'Whats my name'},
Message(content='Your name is Rens!', role='assistant', tool_calls=None, function_call=None, provider_specific_fields={'refusal': None}, annotations=[])]
chat.print_hist(){'role': 'user', 'content': 'Hey my name is Rens'}
Message(content='Hi Rens! Nice to meet you. How can I help you today? 😊', role='assistant', tool_calls=None, function_call=None, provider_specific_fields={'refusal': None}, annotations=[])
{'role': 'user', 'content': 'Whats my name'}
Message(content='Your name is Rens!', role='assistant', tool_calls=None, function_call=None, provider_specific_fields={'refusal': None}, annotations=[])
You can also pass an old chat history into new Chat objects:
for m in ms[1:]:
chat2 = Chat(m, hist=chat.hist)
r = chat2("What was my name again?")
test_eq('Rens' in contents(r).content, True)
rYour name is Rens. 😊
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
stop - usage:
Usage(completion_tokens=7, prompt_tokens=61, total_tokens=68, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
You can prefix an OpenAI compatible model with ‘openai/’ and use an api_base and api_key argument to use models not registered with litellm.
import os, litellm
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
OPENROUTER_BASE_URL = "https://openrouter.ai/api/v1"
c = Chat("openai/gpt-oss-20b", api_key=OPENROUTER_API_KEY, api_base=OPENROUTER_BASE_URL)
c("hi")Synthetic History Creation
Lets build chat history step by step. That way we can tweak anything we need to during testing.
pr = "What is 5 + 7? Use the tool to calculate it."
for m in ms[1:]:
c = Chat(m, tools=[simple_add])
res = c(pr)
test_eq('12' in contents(res).content, True)
test_eq(nested_idx(c.hist,1,'tool_calls',0,'function','name'), 'simple_add')Whereas normally without tools we would get one user input and one assistant response. Here we get two extra messages in between. - An assistant message requesting the tools with arguments. - A tool response with the result to the tool call.
c.print_hist(){'role': 'user', 'content': 'What is 5 + 7? Use the tool to calculate it.'}
Message(content=None, role='assistant', tool_calls=[{'function': {'arguments': '{"a":5,"b":7}', 'name': 'simple_add'}, 'id': 'call_0-v0en5bTn_cpUmdAErlRQ', 'type': 'function'}], function_call=None, provider_specific_fields={'refusal': None}, annotations=[])
{'tool_call_id': 'call_0-v0en5bTn_cpUmdAErlRQ', 'role': 'tool', 'name': 'simple_add', 'content': '12'}
{'role': 'user', 'content': 'You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed.'}
Message(content="I used the tool to calculate 5 + 7, and the result is 12.\n\nIf you have any more calculations or questions, please let me know how you'd like to proceed, as I currently cannot use additional tools.", role='assistant', tool_calls=None, function_call=None, provider_specific_fields={'refusal': None}, annotations=[])
Lets try to build this up manually so we have full control over the inputs.
random_tool_id
random_tool_id ()
Generate a random tool ID with ‘toolu_’ prefix
random_tool_id()'toolu_1pu1lJo7XBetF5gIRHYH7LKBK'
A tool call request can contain one more or more tool calls. Lets make one.
mk_tc
mk_tc (func, args, tcid=None, idx=1)
tc = mk_tc(simple_add.__name__, json.dumps(dict(a=5, b=7)))
tc{'index': 1,
'function': {'arguments': '{"a": 5, "b": 7}', 'name': 'simple_add'},
'id': 'toolu_xJsllLODfU25035HyRrY03K6J',
'type': 'function'}
This can then be packged into the full Message object produced by the assitant.
def mk_tc_req(content, tcs): return Message(content=content, role='assistant', tool_calls=tcs, function_call=None)tc_cts = "I'll use the simple_add tool to calculate 5 + 7 for you."
tcq = mk_tc_req(tc_cts, [tc])
tcqMessage(content="I'll use the simple_add tool to calculate 5 + 7 for you.", role='assistant', tool_calls=[ChatCompletionMessageToolCall(index=1, function=Function(arguments='{"a": 5, "b": 7}', name='simple_add'), id='toolu_pCV5mqkFR1C_HqnFc1gagQ', type='function')], function_call=None, provider_specific_fields=None)
Notice how Message instantiation creates a list of ChatCompletionMessageToolCalls by default. When the tools are executed this is converted back to a dictionary, for consistency we want to keep these as dictionaries from the beginning.
mk_tc_req
mk_tc_req (content, tcs)
tcq = mk_tc_req(tc_cts, [tc])
tcqMessage(content="I'll use the simple_add tool to calculate 5 + 7 for you.", role='assistant', tool_calls=[{'index': 1, 'function': {'arguments': '{"a": 5, "b": 7}', 'name': 'simple_add'}, 'id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q', 'type': 'function'}], function_call=None, provider_specific_fields=None)
c = Chat(model, tools=[simple_add], hist=[pr, tcq])c.print_hist(){'role': 'user', 'content': 'What is 5 + 7? Use the tool to calculate it.'}
Message(content="I'll use the simple_add tool to calculate 5 + 7 for you.", role='assistant', tool_calls=[{'index': 1, 'function': {'arguments': '{"a": 5, "b": 7}', 'name': 'simple_add'}, 'id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q', 'type': 'function'}], function_call=None, provider_specific_fields=None)
Looks good so far! Now we will want to provide the actual result!
mk_tc_result
mk_tc_result (tc, result)
Note we might have more than one tool call if more than one was passed in, here we just will make one result.
tcq.tool_calls[0]{'index': 1,
'function': {'arguments': '{"a": 5, "b": 7}', 'name': 'simple_add'},
'id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q',
'type': 'function'}
mk_tc_result(tcq.tool_calls[0], '12'){'tool_call_id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q',
'role': 'tool',
'name': 'simple_add',
'content': '12'}
mk_tc_results
mk_tc_results (tcq, results)
Same for here tcq.tool_calls will match the number of results passed in the results list.
tcqMessage(content="I'll use the simple_add tool to calculate 5 + 7 for you.", role='assistant', tool_calls=[{'index': 1, 'function': {'arguments': '{"a": 5, "b": 7}', 'name': 'simple_add'}, 'id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q', 'type': 'function'}], function_call=None, provider_specific_fields=None)
tcr = mk_tc_results(tcq, ['12'])
tcr[{'tool_call_id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q',
'role': 'tool',
'name': 'simple_add',
'content': '12'}]
Now we can call it with this synthetic data to see what the response is!
c(tcr[0])OK, 5 + 7 = 12.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=12, prompt_tokens=134, total_tokens=146, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=134, image_tokens=None))
c.print_hist(){'role': 'user', 'content': 'What is 5 + 7? Use the tool to calculate it.'}
Message(content="I'll use the simple_add tool to calculate 5 + 7 for you.", role='assistant', tool_calls=[{'index': 1, 'function': {'arguments': '{"a": 5, "b": 7}', 'name': 'simple_add'}, 'id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q', 'type': 'function'}], function_call=None, provider_specific_fields=None)
{'tool_call_id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q', 'role': 'tool', 'name': 'simple_add', 'content': '12'}
Message(content='OK, 5 + 7 = 12.\n', role='assistant', tool_calls=None, function_call=None, images=[], thinking_blocks=[], provider_specific_fields=None)
Lets try this again, but lets give it something that is clearly wrong for fun.
c = Chat(model, tools=[simple_add], hist=[pr, tcq])tcr = mk_tc_results(tcq, ['13'])
tcr[{'tool_call_id': 'toolu__4KGDeq8SNCzQfrN-wrA8Q',
'role': 'tool',
'name': 'simple_add',
'content': '13'}]
c(tcr[0])OK. 5 + 7 = 13.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=12, prompt_tokens=134, total_tokens=146, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=134, image_tokens=None))
Lets make sure this works with multiple tool calls in the same assistant Message.
tcs = [
mk_tc(simple_add.__name__, json.dumps({"a": 5, "b": 7})),
mk_tc(simple_add.__name__, json.dumps({"a": 6, "b": 7})),
]tcq = mk_tc_req("I will calculate these for you!", tcs)
tcqMessage(content='I will calculate these for you!', role='assistant', tool_calls=[{'index': 1, 'function': {'arguments': '{"a": 5, "b": 7}', 'name': 'simple_add'}, 'id': 'toolu_5v1o6NacQcK4YBYCu0oGyw', 'type': 'function'}, {'index': 1, 'function': {'arguments': '{"a": 6, "b": 7}', 'name': 'simple_add'}, 'id': 'toolu_spxGfStfSTKR3Fnv6yGj9g', 'type': 'function'}], function_call=None, provider_specific_fields=None)
tcr = mk_tc_results(tcq, ['12', '13'])c = Chat(model, tools=[simple_add], hist=[pr, tcq, tcr[0]])c(tcr[1])Based on my calculations, I can summarize my findings.
The primary goal was to calculate 5 + 7. Using the tool, I found that 5 + 7 = 12.
In addition to this, I also performed a calculation and found that 6 + 7 = 13.
The initial goal of calculating 5 + 7 has been successfully completed. There is no further work that needs to be done to answer your original question.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=810, prompt_tokens=273, total_tokens=1083, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=713, rejected_prediction_tokens=None, text_tokens=97, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=273, image_tokens=None))
c.print_hist(){'role': 'user', 'content': 'What is 5 + 7? Use the tool to calculate it.'}
Message(content='I will calculate these for you!', role='assistant', tool_calls=[{'index': 1, 'function': {'arguments': '{"a": 5, "b": 7}', 'name': 'simple_add'}, 'id': 'toolu_5v1o6NacQcK4YBYCu0oGyw', 'type': 'function'}, {'index': 1, 'function': {'arguments': '{"a": 6, "b": 7}', 'name': 'simple_add'}, 'id': 'toolu_spxGfStfSTKR3Fnv6yGj9g', 'type': 'function'}], function_call=None, provider_specific_fields=None)
{'tool_call_id': 'toolu_5v1o6NacQcK4YBYCu0oGyw', 'role': 'tool', 'name': 'simple_add', 'content': '12'}
{'tool_call_id': 'toolu_spxGfStfSTKR3Fnv6yGj9g', 'role': 'tool', 'name': 'simple_add', 'content': '13'}
Message(content='I have calculated the result of 5 + 7, which is 12.\nI have also calculated on my own the result of 6 + 7, which is 13.\n', role='assistant', tool_calls=[{'index': 0, 'provider_specific_fields': {'thought_signature': 'CoISAXLI2nzMvxQWdOI+fIi8QPOCXMRClpTiD/DPnpvLVOYfBfTrFoI0M6HcsgvIiqUT4kLryRuVRUEeZ7AEacFzmOy17L5fxHgbA6zd+RscrEm1IC/vJ/1U+IrjCX9CVRJkpS5rkWA0kG618Psrpk1odcvcXdoXRaDsJMM/HtCTRpIRWofaMQdGjBU7q7JNGOGCX5WRoZc+o9TVYLo2nEdyZpRar11fah8Af0lBz9aXSGf5Y1GWFE0UL6Rnr+qFKOYNr1QdYkgGfrfAn17XsRIcFMz4mm9btq8FjzxgEFeqknSr90v2a2jtqAUNK5EAVFPCZ4t0YFJmKYKcO4IMTscqaVWy3QICj5whIXdXqHbqfIoWBrgKzX8zE2v/AnDQ74enqLBF3KjQIby85ZbU2GIu2tTrEglpHDVAOTQFzhtSWwUwwTE/e/Jb/aKpkjza++j7Y2zbQap0VLMGLe714VLEQoLWhTBlsPxhHYmxvqVJvWzwfxj0mkiEcB0oJMtBRFb+y9q2Mbw/cgmrU+xDT6G88AhZClNtSBiAj7kzU9g6Hd7wD1aLxw8hckNXKIXhSj8mdthTQh32mGEo8RdvDA6PcMyOqldZD4aLQxaRfbW6Dm5jeLiPBk0NWBhXDBiIVPxqrmywAel1NWV0ONOUg6QCsWqFDfDPjgQXLU7KsN4Hr4jAe/MZf5pDXQxmLxGESqeMFrYNfvvbqrTOwv9/zX1gxthZ81Vtod3xm73GR6uBp0PEA+lZx99r9NwnbxWib5kyt6bzkCBexmT3x0TmfW1ueszIW2jGq8p5Wj/iVWSYpFF9LCw+K7XwiNEclYvtMjfn8ITsBuj6fr4YzHvprFmqJIJvclyjeev8Pnd5YkHgK1OXav9N21KHDq8zLrq9FQqFBokvhJ8p0WVczaM2Y7seNhGPXqMDkz2OYoHcpQ0dDwYfgCU3nGNFcp5hBnZHSUsk318pqX7ghABBAAvMFaEM45pLVirD1cvQ3vgX4ERTSRX6hjhZegdvb/+4+VHanE5vXFf7s2XgqG9okMdNkjo86zMwJhRjYiZi9NRax54Cvv80kh9eaKX9pBikOu0anNVVBYd2jKVk7ldaoYxTLy+1nGOupmjPZpx9f+2USQ1ysVKxWjiuLZPhTCwZp/fU3Ym5KWxM4TOf43AcZbJgwx5b5Gi2wWsEkIaMqEWLA+RKdKX6OnF/FPjvzd0pOw8JZBA1YSoWPbGLn6hlKUZU/Gd2B862a/fig49AIcgPytG+w+iPU2+3Ck2QxQpLZ5Ic7VHfBtngTI/HwdgmmkzNrOZiFcI1SXYIeMdks7xi4/4lDRTq1E50SiQz5nD3GvEldPVsVOMlbzeU/D365mZ4qxf+Ngmd7xQSXn4/fp7ormNp34BWtJ3kWgIIsUiU7R1ALrUBdAeEAeuoAOcitrMcTPT4zaGPjzYjDYMCridQhcBTGor1NuyjxtkOlKaXfa5PrfL7yUs6X64ZZZuTsm3rr7/92TcwYLh5ILVKulJ33fy4/Ad8EQdCRHcBcUEZwio4qUDWrqJaIxn/SzEyp2DyOMOBiw5iaVqBKGMEvqhfhCkLwe/Oz7tclsxhHibNijhTlPMGpBLCoNPPIW6nEl0NKXCsnEuERGgh8kD+C38DqVKartF+jX2kUhxakq72H+Hln+uRz1Bnhf4J1wCF0++raLut9/8GgawtxxuFtz3fV6alzyZue8GcOpr8wFhSKK6AX+8h8apCPxVP/8U5FFtVE/7S5wl77XaNah+Vl9VnDFjQH/6xEYJXlw/npEdeBCpD/2oOsdYGaOpCdqNvVkTTeyKKyIDvhmF6ehc1ECTvkbobmP3Fgkv2dl6tzEv33n7r66qTXuJ29XjPkRt+6G82mOUJ5WtaERLW36f56xVykacZsXmCCJzl1TdftxtSxbYYSSmx9fv7vY5Ibv+KLgCwtCO+FgeJEcL3SHWmNrASPtgOYSgtgJZR6KnoZlCw8/GyXk/5cvpoM7M81RlhMUvC8zPypLqlZyLW0ABgroKTkwnNVBAqxpl2HSpv1mbEFVOGXsKwIqMLr6nJk4r+8ltI7LDb3z8jWCwWzSEuqGCjl8aPP60vz1evRw3sgkRjC/bZGG0kWL1SoE6HBAMCZoUcpPiVsqrZnIV0biW1aK4N1ija7Y5e1Aj+rfQx1iT8XaoFhYlAVGw3UgrhZB1dRKDLnKBOiJpBYtzKNQKBQdfIlVQe3q/qlBrxy4vWD80Lukh7gLhggyCZorMwAfhjUZqKLLuM8AkOQJXkp8D8/BFuX14aS9hoRczp1Ega+VcVMrunwDkVoIIzbKyUdJIQogoA09Y7MpYUucayB//iJH2a/GdycKozXJ2qIKjeGQKRTrNf6AGPAZTg6j1fCWtzA3Tpk0HKfxau99l6raNvDUW4thEz15BO6aV2djk1UUNogc79N/9eDxoXnksUT8nyRTUqA3wow1DZ0v0j4UtweVBrqp3Es03oQItru2Cn1dwRNsGpiTs2pKCDo36rFkAVtsm/nREnlqyU51jYbZcGfew1eiP6f+1/oZ1hl7QGYOGrHc2nzvLnR1fHR3Yb/IgK6ACfaoli/V/9NtyMff84ZfHLOh1Ee2PWxnxDCOXDJv8TmjelNb4MqjE5nK0GLg9E5bTHRa1GTiWYfVte/JwblCMI2rFOm9IVCKnv1kdB2oSsCPNTqg70oPOVNpwmDNnz1DCRpGj8u58oW7lRJiw0yR6CH0swVIL9OC3agl/JR5sgct+DEPsuIJDlLzci5X2+qNGvStgO0QI8istnOUdg4Pbc9h2PP8pNbGI3Tf84PUF+7Vb1NqE5M9OgHHQ5sbjZ7NwhZEUtxxZ1GjmG/WjFE+bdVp/WqK0WQv0JezB2cYK6xrNlYlw+cxp2zVmhjGwuVEXIX5yJTNJCtuBOae4jjRvF/x7dDKvZBbTy0Cw3EucWqhuaAmVaOCcOznslE/BgIxVQgxQP94Ijw+EgTQUmgg5XEDClfH8s+msxJRhMTJR+J08j4Y8NXMUhjzUmdk957CJcohyMDmi9XZ1GYsIrUSjde8er3acWDxn/hqa/f0Omjkgh64pHg8M='}, 'function': {'arguments': '{"b": 7, "a": 5}', 'name': 'simple_add'}, 'id': 'call_xHDw5-dvT7i0EvwSrDIsEg', 'type': 'function'}], function_call=None, images=[], thinking_blocks=[], provider_specific_fields=None)
{'tool_call_id': 'call_xHDw5-dvT7i0EvwSrDIsEg', 'role': 'tool', 'name': 'simple_add', 'content': '12'}
{'role': 'user', 'content': 'You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed.'}
Message(content='Based on my calculations, I can summarize my findings.\n\nThe primary goal was to calculate 5 + 7. Using the tool, I found that **5 + 7 = 12**.\n\nIn addition to this, I also performed a calculation and found that **6 + 7 = 13**.\n\nThe initial goal of calculating 5 + 7 has been successfully completed. There is no further work that needs to be done to answer your original question.', role='assistant', tool_calls=None, function_call=None, images=[], thinking_blocks=[], provider_specific_fields=None)
chat = Chat(ms[1], tools=[simple_add])
res = chat("What's 5 + 3? Use the `simple_add` tool.")
resBased on my previous action, I used the simple_add tool to calculate the sum of 5 and 3.
Summary of Findings: The result of 5 + 3 is 8.
The goal has been completed, and no further work is necessary for this request.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=583, prompt_tokens=157, total_tokens=740, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=521, rejected_prediction_tokens=None, text_tokens=62, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=157, image_tokens=None))
res = chat("Now, tell me a joke based on that result.")
resOf course!
What did the number 0 say to the number 8?
“Nice belt!”
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=391, prompt_tokens=232, total_tokens=623, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=369, rejected_prediction_tokens=None, text_tokens=22, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=232, image_tokens=None))
chat.hist[{'role': 'user', 'content': "What's 5 + 3? Use the `simple_add` tool."},
Message(content=None, role='assistant', tool_calls=[{'index': 0, 'provider_specific_fields': {'thought_signature': 'CoIEAXLI2nw1pmEkFrMxX4qeFfBXawudFRzjUShdrshCSROYAmlItF4TzD7zg4RVJNWvDeeWSodE4VpkOBn84S3uzHcPHj4bQ5KIJUTOdKgiwlhXBEyfy9Qf42ON0WTqiG8TGiKAyFGjLzj+VShlrGi9LGQrsjWaOiEfGdksmWeoUIS4JYIA9VqUE/96gDckFnjH4pg7WWPYI6ruxVfICe7z77HmLkUakZTnMKZ4zE536X7LJKhP/1fGoI7985yNA4jiaIprl5znyNlEUCFjwiHT5ujyr1J7wNHWvhBm1nT7hqkmK1XcjqG5YBJAEhVo9CEf5n8kunCK4TQnSWX1LT6Khm6wIB7aBvHvOknO2CVa3CIU+ALjXxZFnSDVSUUts2JK326Si55l+p6h22xlsQ9Eb9IwGMKApoiY8dpGmSpj64e3uEBaTbIr3g6ZpG+4a2DIa/IhdukcLVsOep81J8pdPHKJO5GDYVtxiSwuudf0TZdnhnk201bBraF/Wa0A01CV8HWrtlWQm741YlDvaLfjHiioRFr3H9ZplmQiK/BXBS/KIpT8rE6FQl7hv+yRGkBN0bAAkvLurhgYh+ndezb5TxrGsobjxJazNlLHa0T2Hj6Pk5nrEd5T91nPwHBLgxs6FKjT9xe2tRLU0qjxHCqXB74qkmaNiR6BW9oUCIZeNsPVyg=='}, 'function': {'arguments': '{"b": 3, "a": 5}', 'name': 'simple_add'}, 'id': 'call_KIBcXa0bT2CJ5NqyDtxtKw', 'type': 'function'}], function_call=None, images=[], thinking_blocks=[], provider_specific_fields=None),
{'tool_call_id': 'call_KIBcXa0bT2CJ5NqyDtxtKw',
'role': 'tool',
'name': 'simple_add',
'content': '8'},
{'role': 'user',
'content': 'You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed.'},
Message(content='Based on my previous action, I used the `simple_add` tool to calculate the sum of 5 and 3.\n\n**Summary of Findings:**\nThe result of 5 + 3 is 8.\n\nThe goal has been completed, and no further work is necessary for this request.', role='assistant', tool_calls=None, function_call=None, images=[], thinking_blocks=[], provider_specific_fields=None),
{'role': 'user', 'content': 'Now, tell me a joke based on that result.'},
Message(content='Of course!\n\nWhat did the number 0 say to the number 8?\n\n"Nice belt!"', role='assistant', tool_calls=None, function_call=None, images=[], thinking_blocks=[], provider_specific_fields=None)]
Images
for m in ms[1:]:
chat = Chat(m)
r = chat(['Whats in this img?',img_fn.read_bytes()])
test_eq('puppy' in contents(r).content, True)
rThis image shows a cute puppy lying on the grass next to some purple flowers. The puppy has brown and white fur and is looking directly at the camera.
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
stop - usage:
Usage(completion_tokens=31, prompt_tokens=267, total_tokens=298, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
Prefill
Prefill works as expected:
for m in ms[1:]:
if not get_model_info(m)['supports_assistant_prefill']: continue
chat = Chat(m)
chat('Hi this is Rens!')
r = chat("Spell my name",prefill="Your name is R E")
test_eq(contents(r).content.startswith('Your name is R E N S'), True)And the entire message is stored in the history, not just the generated part:
# chat.hist[-1]Streaming
from time import sleepfor m in ms[1:]:
chat = Chat(m)
stream_gen = chat("Count to 5", stream=True)
for chunk in stream_gen:
if isinstance(chunk, ModelResponse): display(chunk)
else: print(delta_text(chunk) or '',end='')1
2
3
4
5
1 2 3 4 5
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=740, prompt_tokens=5, total_tokens=745, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
1, 2, 3, 4, 5
1, 2, 3, 4, 5
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
stop - usage:
Usage(completion_tokens=39, prompt_tokens=5, total_tokens=44, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
1, 2, 3, 4, 5
1, 2, 3, 4, 5
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5 - finish_reason:
stop - usage:
Usage(completion_tokens=17, prompt_tokens=11, total_tokens=28, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
1
2
3
4
5
1
2
3
4
5
- id:
chatcmpl-xxx - model:
gpt-4.1 - finish_reason:
stop - usage:
Usage(completion_tokens=9, prompt_tokens=11, total_tokens=20, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
Lets try prefill with streaming too:
# stream_gen = chat("Continue counting to 10","Okay! 6, 7",stream=True)
# for chunk in stream_gen:
# if isinstance(chunk, ModelResponse): display(chunk)
# else: print(delta_text(chunk) or '',end='')Tool use
Ok now lets test tool use
for m in ms[1:]:
display(Markdown(f'**{m}:**'))
chat = Chat(m, tools=[simple_add])
res = chat("What's 5 + 3? Use the `simple_add` tool. Explain.")
display(res)gemini/gemini-2.5-pro:
Based on my previous action, I have completed the goal.
Here is a summary of my findings:
I was asked to calculate the sum of 5 and 3 using the simple_add tool. I successfully used the tool, providing it with the inputs a=5 and b=3. The tool returned the result 8.
Therefore, 5 + 3 = 8.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=699, prompt_tokens=178, total_tokens=877, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=613, rejected_prediction_tokens=None, text_tokens=86, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=178, image_tokens=None))
gemini/gemini-2.5-flash:
I used the simple_add tool to calculate 5 + 3. The tool returned the result 8.
Therefore, 5 + 3 = 8.
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
stop - usage:
Usage(completion_tokens=133, prompt_tokens=160, total_tokens=293, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=96, rejected_prediction_tokens=None, text_tokens=37, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=160, image_tokens=None))
claude-sonnet-4-5:
Summary
I successfully completed the calculation using the simple_add tool.
Result: 5 + 3 = 8
Explanation: The simple_add function took two parameters: - a = 5 (the first operand) - b = 3 (the second operand)
The function performed the addition operation and returned 8 as the result.
The goal has been fully completed - no further work is needed.
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
stop - usage:
Usage(completion_tokens=110, prompt_tokens=770, total_tokens=880, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
openai/gpt-4.1:
I used the simple_add tool to calculate 5 + 3, and the result is 8.
Summary: - The sum of 5 and 3 is 8.
If you have any more calculations or questions, please let me know how you’d like to proceed!
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
stop - usage:
Usage(completion_tokens=55, prompt_tokens=156, total_tokens=211, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
Thinking w tool use
for m in ms[1:]:
_sparams = litellm.get_model_info(m)['supported_openai_params']
if 'reasoning_effort' not in _sparams: continue
display(Markdown(f'**{m}:**'))
chat = Chat(m, tools=[simple_add])
res = chat("What's 5 + 3?",think='l',return_all=True)
display(*res)gemini/gemini-2.5-pro:
🔧 simple_add({“b”: 3, “a”: 5})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=153, prompt_tokens=74, total_tokens=227, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=133, rejected_prediction_tokens=None, text_tokens=20, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=74, image_tokens=None))
{'tool_call_id': 'call_6uICXoIzTiOf8zNLkbFfXQ',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
Based on my previous action, I used a tool to calculate the sum of 5 and 3.
The result of this calculation is 8.
The goal was to find the sum of 5 + 3, which has been successfully completed. No further work is needed.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=725, prompt_tokens=298, total_tokens=1023, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=667, rejected_prediction_tokens=None, text_tokens=58, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=298, image_tokens=None))
gemini/gemini-2.5-flash:
🔧 simple_add({“a”: 5, “b”: 3})
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
tool_calls - usage:
Usage(completion_tokens=73, prompt_tokens=74, total_tokens=147, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=53, rejected_prediction_tokens=None, text_tokens=20, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=74, image_tokens=None))
{'tool_call_id': 'call_Y34O3FtuSuemIIFDT7rswA',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
I used a tool to calculate the sum of 5 and 3. The result of the calculation is 8.
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
stop - usage:
Usage(completion_tokens=24, prompt_tokens=238, total_tokens=262, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=238, image_tokens=None))
claude-sonnet-4-5:
🔧 simple_add({“a”: 5, “b”: 3})
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=122, prompt_tokens=639, total_tokens=761, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=41, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
{'tool_call_id': 'toolu_J0YPIkA9T4OoWYkM1nD2aA',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
Summary
I successfully completed the calculation you requested.
Result: 5 + 3 = 8
The goal has been fully achieved - no further work is needed.
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
stop - usage:
Usage(completion_tokens=112, prompt_tokens=768, total_tokens=880, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=55, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
Search
for m in ms[1:]:
display(Markdown(f'**{m}:**'))
chat = Chat(m)
res = chat("Search the web and tell me very briefly about otters", search='l', stream=True)
for o in res:
if isinstance(o, ModelResponse): sleep(0.01); display(o)
else: passgemini/gemini-2.5-pro:
Otters are carnivorous mammals belonging to the Mustelidae family, which also includes weasels, badgers, and wolverines. There are 14 extant species of these semi-aquatic animals, found in both freshwater and marine environments.
Key characteristics of otters include their long, slender bodies, webbed feet for swimming, and dense, waterproof fur that keeps them warm. In fact, sea otters have the thickest fur of any animal, with up to a million hair follicles per square inch. Their diet is varied and can include fish, crustaceans, frogs, and mollusks. Otters are known for their playful behavior, such as sliding into the water, and some species, like the sea otter, are known to use tools like rocks to open shells.
Otters are considered a keystone species, meaning they play a critical role in maintaining the health and balance of their ecosystems. For example, by preying on sea urchins, sea otters help protect kelp forests from being overgrazed. After facing threats from pollution, some otter populations are making a comeback in certain areas.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=376, prompt_tokens=12, total_tokens=388, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
gemini/gemini-2.5-flash:
Otters are carnivorous mammals belonging to the subfamily Lutrinae, which is part of the weasel family (Mustelidae). There are 14 recognized species of otters, all of which are semi-aquatic, living in both freshwater and marine environments.
They possess long, slender bodies, short limbs, and powerful webbed feet, making them excellent swimmers. Most species also have long, muscular tails, with the exception of the sea otter. Otters are known for their dense, insulated fur, which traps air to keep them warm and buoyant in water, as they lack a blubber layer. Their diet primarily consists of fish, but can also include crustaceans, frogs, birds, and shellfish, depending on the species and availability. Otters are found on every continent except Australia and Antarctica.
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
stop - usage:
Usage(completion_tokens=255, prompt_tokens=12, total_tokens=267, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
claude-sonnet-4-5:
I can provide you with information about otters from my existing knowledge:
Otters are semi-aquatic mammals belonging to the family Mustelidae (which also includes weasels, badgers, and ferrets). There are 13 species of otters found around the world, living in both freshwater and marine environments.
Key facts about otters: - Habitat: They live near rivers, lakes, and coastal areas across every continent except Antarctica and Australia - Physical traits: They have streamlined bodies, webbed feet, dense waterproof fur, and long tails that help them swim - Diet: Carnivorous, feeding mainly on fish, crustaceans, and mollusks - Behavior: Highly playful and social animals, often seen sliding down muddy banks or playing with rocks - Intelligence: Known for using tools, particularly sea otters who use rocks to crack open shellfish - Conservation: Several species are endangered due to habitat loss, pollution, and historical fur trade
Sea otters are particularly notable for having the densest fur of any animal, with up to 1 million hairs per square inch, which keeps them warm in cold ocean waters.
🔧 web_search({“query”: “otters facts”})
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5 - finish_reason:
stop - usage:
Usage(completion_tokens=318, prompt_tokens=4542, total_tokens=4860, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=None)
openai/gpt-4.1:
Otters are semi-aquatic mammals known for their playful behavior and sleek bodies. They belong to the family Mustelidae and are found in rivers, lakes, and coastal areas worldwide. Otters have webbed feet for swimming, dense fur for insulation, and primarily eat fish and invertebrates. Some species, like the sea otter, use tools to open shellfish. Many otter populations are threatened by habitat loss and pollution.
- id:
chatcmpl-xxx - model:
gpt-4.1 - finish_reason:
stop - usage:
Usage(completion_tokens=89, prompt_tokens=18, total_tokens=107, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
Multi tool calling
We can let the model call multiple tools in sequence using the max_steps parameter.
for m in ms:
display(Markdown(f'**{m}:**'))
chat = Chat(m, tools=[simple_add])
res = chat("What's ((5 + 3)+7)+11? Work step by step", return_all=True, max_steps=5)
for r in res: display(r)gemini/gemini-3-pro-preview:
🔧 simple_add({“a”: 5, “b”: 3})
- id:
chatcmpl-xxx - model:
gemini-3-pro-preview - finish_reason:
tool_calls - usage:
Usage(completion_tokens=142, prompt_tokens=94, total_tokens=236, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=124, rejected_prediction_tokens=None, text_tokens=18, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=94, image_tokens=None))
{'tool_call_id': 'call_IoS3pEfnRZOLWIXKC7LD8A',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
🔧 simple_add({“a”: 8, “b”: 7})
- id:
chatcmpl-xxx - model:
gemini-3-pro-preview - finish_reason:
tool_calls - usage:
Usage(completion_tokens=18, prompt_tokens=247, total_tokens=265, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=247, image_tokens=None))
{'tool_call_id': 'call_e1kFG-QASNeDHVqXPXkvoQ',
'role': 'tool',
'name': 'simple_add',
'content': '15'}
🔧 simple_add({“a”: 15, “b”: 11})
- id:
chatcmpl-xxx - model:
gemini-3-pro-preview - finish_reason:
tool_calls - usage:
Usage(completion_tokens=20, prompt_tokens=279, total_tokens=299, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=279, image_tokens=None))
{'tool_call_id': 'call_rGQrTEmyTe2cMdmyWit0Ww',
'role': 'tool',
'name': 'simple_add',
'content': '26'}
Here is the step-by-step solution:
- First, solve the innermost parentheses: (5 + 3) = 8
- Next, add the result to the next number: (8 + 7) = 15
- Finally, add the last number: 15 + 11 = 26
The final answer is 26.
- id:
chatcmpl-xxx - model:
gemini-3-pro-preview - finish_reason:
stop - usage:
Usage(completion_tokens=88, prompt_tokens=313, total_tokens=401, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=313, image_tokens=None))
gemini/gemini-2.5-pro:
🔧 simple_add({“b”: 3, “a”: 5})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=358, prompt_tokens=83, total_tokens=441, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=338, rejected_prediction_tokens=None, text_tokens=20, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=83, image_tokens=None))
{'tool_call_id': 'call_5FZpfPJoS6qXHHAtW-ScBA',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
Okay, the first step is 5 + 3 = 8. Next, we add 7 to that result.
🔧 simple_add({“b”: 7, “a”: 8})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=124, prompt_tokens=117, total_tokens=241, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=78, rejected_prediction_tokens=None, text_tokens=46, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=117, image_tokens=None))
{'tool_call_id': 'call_IeFQlJ7_RGSakPU0oj1MnQ',
'role': 'tool',
'name': 'simple_add',
'content': '15'}
Okay, the second step is 8 + 7 = 15. Finally, we add 11 to that result.
🔧 simple_add({“b”: 11, “a”: 15})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=50, prompt_tokens=178, total_tokens=228, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=178, image_tokens=None))
{'tool_call_id': 'call_v5zFRWNVSPePb6mFtzLUbw',
'role': 'tool',
'name': 'simple_add',
'content': '26'}
Okay, the last step is 15 + 11 = 26.
So, ((5 + 3)+7)+11 = 26.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=36, prompt_tokens=243, total_tokens=279, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=243, image_tokens=None))
gemini/gemini-2.5-flash:
🔧 simple_add({“b”: 3, “a”: 5})
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
tool_calls - usage:
Usage(completion_tokens=93, prompt_tokens=83, total_tokens=176, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=73, rejected_prediction_tokens=None, text_tokens=20, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=83, image_tokens=None))
{'tool_call_id': 'call_FKpFHKacS4WUMvjbahdMHA',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
🔧 simple_add({“b”: 7, “a”: 8})
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
tool_calls - usage:
Usage(completion_tokens=57, prompt_tokens=117, total_tokens=174, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=37, rejected_prediction_tokens=None, text_tokens=20, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=117, image_tokens=None))
{'tool_call_id': 'call_stZQrzE7QreYNjGJAGPkLw',
'role': 'tool',
'name': 'simple_add',
'content': '15'}
🔧 simple_add({“a”: 15, “b”: 11})
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
tool_calls - usage:
Usage(completion_tokens=67, prompt_tokens=152, total_tokens=219, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=45, rejected_prediction_tokens=None, text_tokens=22, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=152, image_tokens=None))
{'tool_call_id': 'call_ORzwRj1KTVGo_v0EVZtZdQ',
'role': 'tool',
'name': 'simple_add',
'content': '26'}
Here’s how we can break this down: 5 + 3 = 8 8 + 7 = 15 15 + 11 = 26
So, ((5 + 3) + 7) + 11 = 26.
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
stop - usage:
Usage(completion_tokens=92, prompt_tokens=189, total_tokens=281, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=32, rejected_prediction_tokens=None, text_tokens=60, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=189, image_tokens=None))
claude-sonnet-4-5:
I’ll solve this step by step using the addition function.
Step 1: First, let me calculate 5 + 3
🔧 simple_add({“a”: 5, “b”: 3})
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=100, prompt_tokens=617, total_tokens=717, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
{'tool_call_id': 'toolu_tdl_92DvRHGyuP85oyybbw',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
Step 2: Now I’ll add 7 to that result (8 + 7)
🔧 simple_add({“a”: 8, “b”: 7})
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=93, prompt_tokens=730, total_tokens=823, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
{'tool_call_id': 'toolu_3_GzB5FyTwqsfIgD4Bu-UA',
'role': 'tool',
'name': 'simple_add',
'content': '15'}
Step 3: Finally, I’ll add 11 to that result (15 + 11)
🔧 simple_add({“a”: 15, “b”: 11})
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=94, prompt_tokens=836, total_tokens=930, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
{'tool_call_id': 'toolu_3yb1F2b6SYmIE11YahaJrQ',
'role': 'tool',
'name': 'simple_add',
'content': '26'}
Answer: ((5 + 3) + 7) + 11 = 26
Here’s the breakdown: - 5 + 3 = 8 - 8 + 7 = 15 - 15 + 11 = 26
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
stop - usage:
Usage(completion_tokens=67, prompt_tokens=943, total_tokens=1010, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
openai/gpt-4.1:
🔧 simple_add({“a”:5,“b”:3})
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=18, prompt_tokens=82, total_tokens=100, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
{'tool_call_id': 'call_xa32gWsQRTqRRd4Fs6sbLA',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
🔧 simple_add({“a”:8,“b”:7})
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=18, prompt_tokens=109, total_tokens=127, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
{'tool_call_id': 'call_Kmmsxwv5QO_1gWt0qYWrYQ',
'role': 'tool',
'name': 'simple_add',
'content': '15'}
🔧 simple_add({“a”:15,“b”:11})
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=18, prompt_tokens=136, total_tokens=154, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
{'tool_call_id': 'call_s5aQV0JcQgCQWtprcgKZ4w',
'role': 'tool',
'name': 'simple_add',
'content': '26'}
Let’s break it down step by step:
- First, add 5 + 3 = 8
- Then, add 8 + 7 = 15
- Finally, add 15 + 11 = 26
So, ((5 + 3) + 7) + 11 = 26.
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
stop - usage:
Usage(completion_tokens=70, prompt_tokens=163, total_tokens=233, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
Some models support parallel tool calling. I.e. sending multiple tool call requests in one conversation step.
def multiply(a: int, b: int) -> int:
"Multiply two numbers"
return a * b
for m in ms[1:]:
_sparams = litellm.get_model_info(m)['supported_openai_params']
if 'parallel_tool_calls' not in _sparams: continue
display(Markdown(f'**{m}:**'))
chat = Chat(m, tools=[simple_add, multiply])
res = chat("Calculate (5 + 3) * (7 + 2)", max_steps=5, return_all=True)
for r in res: display(r)gemini/gemini-2.5-pro:
I will first calculate the two sums and then multiply the results.
🔧 simple_add({“b”: 3, “a”: 5})
🔧 simple_add({“a”: 7, “b”: 2})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=394, prompt_tokens=133, total_tokens=527, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=341, rejected_prediction_tokens=None, text_tokens=53, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=133, image_tokens=None))
{'tool_call_id': 'call_4ovJ-4cPSEyyRPU2KF4ltA',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
{'tool_call_id': 'call_mp5DEI_4S6uodUzTfL1wJQ',
'role': 'tool',
'name': 'simple_add',
'content': '9'}
🔧 multiply({“b”: 9, “a”: 8})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=391, prompt_tokens=213, total_tokens=604, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=373, rejected_prediction_tokens=None, text_tokens=18, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=213, image_tokens=None))
{'tool_call_id': 'call_CfYEj_JFRGCABIhMwWdzPw',
'role': 'tool',
'name': 'multiply',
'content': '72'}
The result is 72.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=7, prompt_tokens=244, total_tokens=251, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=244, image_tokens=None))
gemini/gemini-2.5-flash:
🔧 simple_add({“a”: 5, “b”: 3})
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
tool_calls - usage:
Usage(completion_tokens=109, prompt_tokens=133, total_tokens=242, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=89, rejected_prediction_tokens=None, text_tokens=20, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=133, image_tokens=None))
{'tool_call_id': 'call_1nXr90-jTJqTcQ9Xfpz4Tw',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
🔧 simple_add({“a”: 7, “b”: 2})
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
tool_calls - usage:
Usage(completion_tokens=66, prompt_tokens=167, total_tokens=233, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=46, rejected_prediction_tokens=None, text_tokens=20, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=167, image_tokens=None))
{'tool_call_id': 'call_0p3F388dQRCMw22Md4Y-5Q',
'role': 'tool',
'name': 'simple_add',
'content': '9'}
🔧 multiply({“b”: 9, “a”: 8})
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
tool_calls - usage:
Usage(completion_tokens=87, prompt_tokens=201, total_tokens=288, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=69, rejected_prediction_tokens=None, text_tokens=18, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=201, image_tokens=None))
{'tool_call_id': 'call_akZyGs-6TN25Y6fv4AER5Q',
'role': 'tool',
'name': 'multiply',
'content': '72'}
The answer is 72.
- id:
chatcmpl-xxx - model:
gemini-2.5-flash - finish_reason:
stop - usage:
Usage(completion_tokens=62, prompt_tokens=232, total_tokens=294, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=55, rejected_prediction_tokens=None, text_tokens=7, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=232, image_tokens=None))
claude-sonnet-4-5:
I’ll calculate this step by step.
First, let me calculate the two additions: - 5 + 3 - 7 + 2
Then I’ll multiply the results.
🔧 simple_add({“a”: 5, “b”: 3})
🔧 simple_add({“a”: 7, “b”: 2})
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=166, prompt_tokens=700, total_tokens=866, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
{'tool_call_id': 'toolu_9omkpf-aQzaMbpA3MCDaXA',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
{'tool_call_id': 'toolu_1mMEnRVeSLG6g62kohIaxQ',
'role': 'tool',
'name': 'simple_add',
'content': '9'}
Now I’ll multiply the results:
🔧 multiply({“a”: 8, “b”: 9})
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=76, prompt_tokens=931, total_tokens=1007, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
{'tool_call_id': 'toolu_A8VMcfygRTahad_Cub3uLQ',
'role': 'tool',
'name': 'multiply',
'content': '72'}
The answer is 72.
To break it down: - (5 + 3) = 8 - (7 + 2) = 9 - 8 × 9 = 72
- id:
chatcmpl-xxx - model:
claude-sonnet-4-5-20250929 - finish_reason:
stop - usage:
Usage(completion_tokens=51, prompt_tokens=1020, total_tokens=1071, completion_tokens_details=None, prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=0, cache_creation_token_details=CacheCreationTokenDetails(ephemeral_5m_input_tokens=0, ephemeral_1h_input_tokens=0)), cache_creation_input_tokens=0, cache_read_input_tokens=0)
openai/gpt-4.1:
🔧 simple_add({“a”: 5, “b”: 3})
🔧 simple_add({“a”: 7, “b”: 2})
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=52, prompt_tokens=110, total_tokens=162, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
{'tool_call_id': 'call_auBNUq2zSMuzFYwMZt13lA',
'role': 'tool',
'name': 'simple_add',
'content': '8'}
{'tool_call_id': 'call_A6iYeTapTXSA3ln1UPD8Kw',
'role': 'tool',
'name': 'simple_add',
'content': '9'}
🔧 multiply({“a”:8,“b”:9})
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
tool_calls - usage:
Usage(completion_tokens=17, prompt_tokens=178, total_tokens=195, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
{'tool_call_id': 'call__vFQGwCaQVuBN4vlt6KOCg',
'role': 'tool',
'name': 'multiply',
'content': '72'}
(5 + 3) = 8 and (7 + 2) = 9. Multiplying them together: 8 × 9 = 72.
So, (5 + 3) * (7 + 2) = 72.
- id:
chatcmpl-xxx - model:
gpt-4.1-2025-04-14 - finish_reason:
stop - usage:
Usage(completion_tokens=55, prompt_tokens=203, total_tokens=258, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=0, cached_tokens=0, text_tokens=None, image_tokens=None))
See how the additions are calculated in one go!
We don’t want the model to keep running tools indefinitely. Lets showcase how we can force the model to stop after our specified number of toolcall rounds:
def divide(a: int, b: int) -> float:
"Divide two numbers"
return a / b
chat = Chat(model, tools=[simple_add, multiply, divide])
res = chat("Calculate ((10 + 5) * 3) / (2 + 1) step by step.",
max_steps=3, return_all=True,
final_prompt="Please wrap-up for now and summarize how far we got.")
for r in res: display(r)🔧 simple_add({“b”: 5, “a”: 10})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=330, prompt_tokens=196, total_tokens=526, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=309, rejected_prediction_tokens=None, text_tokens=21, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=196, image_tokens=None))
{'tool_call_id': 'call_nLAXwYdBTpGs-rtL0p6Gkw',
'role': 'tool',
'name': 'simple_add',
'content': '15'}
🔧 simple_add({“b”: 1, “a”: 2})
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
tool_calls - usage:
Usage(completion_tokens=104, prompt_tokens=232, total_tokens=336, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=84, rejected_prediction_tokens=None, text_tokens=20, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=232, image_tokens=None))
{'tool_call_id': 'call_m711DR5wTFKwwftqGQhlFQ',
'role': 'tool',
'name': 'simple_add',
'content': '3'}
Of course. Here is the step-by-step calculation for the expression ((10 + 5) * 3) / (2 + 1):
Step 1: Solve the first part in parentheses.
10 + 5 = 15
Step 2: Solve the second part in parentheses.
2 + 1 = 3
Now, we substitute these results back into the original expression:
(15 * 3) / 3
Step 3: Perform the multiplication.
15 * 3 = 45
Finally, we substitute this result back into the expression:
45 / 3
Step 4: Perform the division.
45 / 3 = 15
So, the final answer is 15.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=362, prompt_tokens=280, total_tokens=642, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=167, rejected_prediction_tokens=None, text_tokens=195, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=280, image_tokens=None))
Tool call exhaustion
pr = "What is 1+2, and then the result of adding +2, and then +3 to it? Use tools to make the calculations!"
c = Chat(model, tools=[simple_add])res = c(pr, max_steps=2)
resBased on my tool use, I found that the first step of your calculation, 1 + 2, equals 3.
I did not complete the full goal. To finish the calculation, the following steps still need to be done:
- Take the initial result, 3, and add 2 to it.
- Take the result of that calculation and add 3 to it.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=663, prompt_tokens=169, total_tokens=832, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=578, rejected_prediction_tokens=None, text_tokens=85, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=169, image_tokens=None))
assert c.hist[-2] == _final_promptAsync
AsyncChat
If you want to use LiteLLM in a webapp you probably want to use their async function acompletion. To make that easier we will implement our version of AsyncChat to complement it. It follows the same implementation as Chat as much as possible:
Testing the scenarios where the tool call was not in schemas, or schemas was missing:
result = await _alite_call_func(fake_tc, [toolsc], globals())
test_eq(result['content'], "Tool not defined in tool_schemas: hallucinated_tool")result = await _alite_call_func(fake_tc, None, globals())
test_eq(result['content'], "Tool not defined in tool_schemas: hallucinated_tool")astream_with_complete
astream_with_complete (agen, postproc=<function noop>)
AsyncChat
AsyncChat (model:str, sp='', temp=0, search=False, tools:list=None, hist:list=None, ns:Optional[dict]=None, cache=False, cache_idxs:list=[-1], ttl=None, api_base=None, api_key=None)
LiteLLM chat client.
| Type | Default | Details | |
|---|---|---|---|
| model | str | LiteLLM compatible model name | |
| sp | str | System prompt | |
| temp | int | 0 | Temperature |
| search | bool | False | Search (l,m,h), if model supports it |
| tools | list | None | Add tools |
| hist | list | None | Chat history |
| ns | Optional | None | Custom namespace for tool calling |
| cache | bool | False | Anthropic prompt caching |
| cache_idxs | list | [-1] | Anthropic cache breakpoint idxs, use 0 for sys prompt if provided |
| ttl | NoneType | None | Anthropic prompt caching ttl |
| api_base | NoneType | None | API base URL for custom providers |
| api_key | NoneType | None | API key for custom providers |
AsyncChat.__call__
AsyncChat.__call__ (msg=None, prefill=None, temp=None, think=None, search=None, stream=False, max_steps=2, final_prompt={'role': 'user', 'content': 'You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed.'}, return_all=False, step=1, tool_choice=None)
Main call method - handles streaming vs non-streaming
| Type | Default | Details | |
|---|---|---|---|
| msg | NoneType | None | Message str, or list of multiple message parts |
| prefill | NoneType | None | Prefill AI response if model supports it |
| temp | NoneType | None | Override temp set on chat initialization |
| think | NoneType | None | Thinking (l,m,h) |
| search | NoneType | None | Override search set on chat initialization (l,m,h) |
| stream | bool | False | Stream results |
| max_steps | int | 2 | Maximum number of tool calls |
| final_prompt | dict | {‘role’: ‘user’, ‘content’: ‘You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed.’} | Final prompt when tool calls have ran out |
| return_all | bool | False | Returns all intermediate ModelResponses if not streaming and has tool calls |
| step | int | 1 | |
| tool_choice | NoneType | None |
Examples
Basic example
for m in ms[1:]:
chat = AsyncChat(m)
test_eq('4' in contents(await chat("What is 2+2?")).content, True)With tool calls
async def async_add(a: int, b: int) -> int:
"Add two numbers asynchronously"
await asyncio.sleep(0.1)
return a + bfor m in ms[1:]:
chat = AsyncChat(m, tools=[async_add])
r = await chat("What is 5 + 7? Use the tool to calculate it.")
test_eq('12' in contents(r).content, True)
test_eq(nested_idx(chat.hist, 1, 'tool_calls', 0, 'function', 'name'), 'async_add')Async Streaming Display
This is what our outputs look like with streaming results:
chat_with_tools = AsyncChat(model, tools=[async_add])
res = await chat_with_tools("What is 5 + 7? Use the tool to calculate it.", stream=True)
async for o in res:
if isinstance(o,ModelResponseStream): print(delta_text(o) or '',end='')
elif isinstance(o,dict): print(o)
🔧 async_add
{'tool_call_id': 'call_0TjRUIVXQWqnUCqBIifZbQ', 'role': 'tool', 'name': 'async_add', 'content': '12'}
Based on the tool usage, I was able to complete the requested task.
**Summary of Findings:**
* **Goal:** To calculate the sum of 5 and 7.
* **Action:** I used the `async_add` tool with the inputs `a=5` and `b=7`.
* **Result:** The tool returned the value 12.
The goal was successfully completed. The sum of 5 + 7 is 12. No further work is needed.
Here’s a complete ModelResponse taken from the response stream:
resp = ModelResponse(id='chatcmpl-xxx', created=1000000000, model='claude-sonnet-4-5', object='chat.completion', system_fingerprint=None, choices=[Choices(finish_reason='tool_calls', index=0, message=Message(content="I'll calculate ((10 + 5) * 3) / (2 + 1) step by step:", role='assistant', tool_calls=[ChatCompletionMessageToolCall(function=Function(arguments='{"a": 10, "b": 5}', name='simple_add'), id='toolu_018BGyenjiRkDQFU1jWP6qRo', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"a": 2, "b": 1}', name='simple_add'), id='toolu_01CWqrNQvoRjf1Q1GLpTUgQR', type='function')], function_call=None, provider_specific_fields=None))], usage=Usage(completion_tokens=228, prompt_tokens=794, total_tokens=1022, prompt_tokens_details=None))
print(repr(resp))ModelResponse(id='chatcmpl-xxx', created=1000000000, model='claude-sonnet-4-5', object='chat.completion', system_fingerprint=None, choices=[Choices(finish_reason='tool_calls', index=0, message=Message(content="I'll calculate ((10 + 5) * 3) / (2 + 1) step by step:", role='assistant', tool_calls=[ChatCompletionMessageToolCall(function=Function(arguments='{"a": 10, "b": 5}', name='simple_add'), id='toolu_HXfOQFjYR3alGtTzppm64A', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"a": 2, "b": 1}', name='simple_add'), id='toolu_2erZJkdFTZ6niWOJ3zJ3-Q', type='function')], function_call=None, provider_specific_fields=None))], usage=Usage(completion_tokens=228, prompt_tokens=794, total_tokens=1022, completion_tokens_details=None, prompt_tokens_details=None))
tc=resp.choices[0].message.tool_calls[0]
tcChatCompletionMessageToolCall(function=Function(arguments='{"a": 10, "b": 5}', name='simple_add'), id='toolu_HXfOQFjYR3alGtTzppm64A', type='function')
tr={'tool_call_id': 'toolu_018BGyenjiRkDQFU1jWP6qRo', 'role': 'tool','name': 'simple_add',
'content': '15 is the answer! ' +'.'*2000}mk_tr_details
*Createmk_tr_details (tr, tc, mx=2000)
block for tool call as JSON*
mk_tr_details(tr,tc,mx=300)'\n\n<details class=\'tool-usage-details\'>\n\n```json\n{\n "id": "toolu_018BGyenjiRkDQFU1jWP6qRo",\n "call": {\n "function": "simple_add",\n "arguments": {\n "a": "10",\n "b": "5"\n }\n },\n "result": "15 is the answer! .....<TRUNCATED>"\n}\n```\n\n</details>\n\n'
AsyncStreamFormatter
AsyncStreamFormatter (include_usage=False, mx=2000, debug=False)
Initialize self. See help(type(self)) for accurate signature.
stream_msg = ModelResponseStream([StreamingChoices(delta=Delta(content="Hello world!"))])
print(repr(AsyncStreamFormatter().format_item(stream_msg)))'Hello world!'
reasoning_msg = ModelResponseStream([StreamingChoices(delta=Delta(reasoning_content="thinking..."))])
print(repr(AsyncStreamFormatter().format_item(reasoning_msg)))'🧠'
mock_tool_call = ChatCompletionMessageToolCall(
id="toolu_123abc456def", type="function",
function=Function( name="simple_add", arguments='{"a": 5, "b": 3}' )
)
mock_response = ModelResponse()
mock_response.choices = [type('Choice', (), {
'message': type('Message', (), {
'tool_calls': [mock_tool_call]
})()
})()]
mock_tool_result = {
'tool_call_id': mock_tool_call.id, 'role': 'tool',
'name': 'simple_add', 'content': '8'
}fmt = AsyncStreamFormatter()
fmt.format_item(mock_response)
print(fmt.format_item(mock_tool_result))
<details class='tool-usage-details'>
```json
{
"id": "toolu_NKsY-QpoSI6K1AQVBMFJgg",
"call": {
"function": "simple_add",
"arguments": {
"a": "5",
"b": "3"
}
},
"result": "8"
}
```
</details>
In jupyter it’s nice to use this AsyncStreamFormatter in combination with the Markdown display:
adisplay_stream
adisplay_stream (rs)
Use IPython.display to markdown display the response stream.
Streaming examples
Now we can demonstrate AsyncChat with stream=True!
Tool call
chat = AsyncChat(model, tools=[async_add])
res = await chat("What is 5 + 7? Use the tool to calculate it.", stream=True)
fmt = await adisplay_stream(res){
"id": "call_kUWRrvA9Rmqd7MBq8k392A",
"call": {
"function": "async_add",
"arguments": {
"a": "5",
"b": "7"
}
},
"result": "12"
}Based on the tool usage, I was able to complete the requested task.
Summary of Findings:
- Goal: To calculate the sum of 5 and 7.
- Action: I used the
async_addtool with the inputsa=5andb=7. - Result: The tool returned the value 12.
The goal was successfully completed. The sum of 5 + 7 is 12. No further work is needed.
Thinking tool call
chat = AsyncChat(model)
res = await chat("Briefly, what's the most efficient way to sort a list of 1000 random integers?", think='l',stream=True)
_ = await adisplay_stream(res)🧠🧠🧠🧠
Use the built-in sort function provided by your programming language.
For a list of only 1000 integers, the standard library’s sort function (like Python’s list.sort() or Java’s Arrays.sort()) is the most efficient choice. These are highly optimized, often using a hybrid algorithm like Timsort or Introsort that combines the speed of Quicksort with the stability and worst-case guarantees of other sorts.
Writing your own sort would be slower and less reliable.
Multiple tool calls
chat.hist[1]Message(content="Of course, let's break this down.\n\nFirst, we will evaluate the two sums in the expression, `10 + 5` and `2 + 1`, in parallel.", role='assistant', tool_calls=[{'function': {'arguments': '{"a": 10, "b": 5}', 'name': 'simple_add'}, 'id': 'call_pOaVybZdQia_lpzzp8XLhw', 'type': 'function'}, {'function': {'arguments': '{"b": 1, "a": 2}', 'name': 'simple_add'}, 'id': 'call_b3kJWaPgSzu1awcV5xgDIg', 'type': 'function'}], function_call=None, provider_specific_fields=None)
chat.hist[2]{'tool_call_id': 'call_pOaVybZdQia_lpzzp8XLhw',
'role': 'tool',
'name': 'simple_add',
'content': '15'}
chat.hist[3]{'tool_call_id': 'call_b3kJWaPgSzu1awcV5xgDIg',
'role': 'tool',
'name': 'simple_add',
'content': '3'}
chat.hist[4]Message(content='Now that we have the results for the two sums, we can proceed with the next step. We have calculated that `10 + 5 = 15` and `2 + 1 = 3`. The expression is now `15 * 3 / 3`. We will now perform the multiplication and division in parallel.', role='assistant', tool_calls=[{'function': {'arguments': '{"a": 15, "b": 3}', 'name': 'multiply'}, 'id': 'call_RXi6syapRGWjceosAkcUXw', 'type': 'function'}, {'function': {'arguments': '{"a": 15, "b": 3}', 'name': 'divide'}, 'id': 'call_XgDqbcokTk2WZyAXVVpAhQ', 'type': 'function'}], function_call=None, provider_specific_fields=None)
chat.hist[5]{'tool_call_id': 'call_RXi6syapRGWjceosAkcUXw',
'role': 'tool',
'name': 'multiply',
'content': '45'}
Now to demonstrate that we can load back the formatted output back into a new Chat object:
chat5 = Chat(model,hist=fmt2hist(fmt.outp),tools=[simple_add, multiply, divide])
chat5('what did we just do?')We just broke down the calculation of the expression ((10 + 5) * 3) / (2 + 1) into a series of steps that could be performed in parallel using the available tools.
Here’s a summary of the steps we took:
- First Parallel Calculation: We solved the two expressions inside the parentheses simultaneously.
simple_add(a=10, b=5)which resulted in15.simple_add(a=2, b=1)which resulted in3.
- Second Parallel Calculation: After the first step, the expression was effectively
(15 * 3) / 3. We then performed the next set of calculations in parallel:- We calculated the numerator:
multiply(a=15, b=3)which resulted in45. - We also performed a separate division:
divide(a=15, b=3)which resulted in5.
- We calculated the numerator:
The final step, which we haven’t done yet, is to take the result of the numerator (45) and divide it by the result of the denominator (3) to get the final answer.
- id:
chatcmpl-xxx - model:
gemini-2.5-pro - finish_reason:
stop - usage:
Usage(completion_tokens=1106, prompt_tokens=590, total_tokens=1696, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=842, rejected_prediction_tokens=None, text_tokens=264, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=590, image_tokens=None))
Search
chat_stream_tools = AsyncChat(model, search='l')
res = await chat_stream_tools("Search the weather in NYC", stream=True)
_=await adisplay_stream(res)Mostly Sunny Skies in New York City with a Chilly Forecast Ahead
New York, NY - New Yorkers are experiencing a mostly sunny day with a current temperature of 24°F (-4°C), which feels more like 17°F (-8°C) due to wind chill. The humidity is currently at 53%, and there is a very low chance of snow.
The forecast for the rest of the day indicates a possibility of light snow, with temperatures ranging from a low of 20°F (-7°C) to a high of 28°F (-2°C). Skies will become partly cloudy tonight.
Looking ahead, Tuesday is expected to be mostly cloudy with temperatures between 25°F (-4°C) and 31°F (-1°C). Wednesday will see a mix of clouds and sun, with a notable warm-up as temperatures are forecast to reach a high of 42°F (6°C).
The latter half of the week promises more dynamic weather. Thursday brings a chance of rain showers at night with a high of 44°F (7°C). Rain is likely to continue into Friday, which is expected to be the warmest day of the week with a high of 52°F (11°C).
The weekend will see a return to colder temperatures. Saturday is forecast to be cloudy with a high of 35°F (2°C) and a chance of rain and snow at night. Sunday will be partly cloudy with a high of 44°F (7°C).
Caching
Anthropic
We use explicit caching via cache control checkpoints. Anthropic requires exact match with cached tokens and even a small change results in cache invalidation.
disable_cachy()a,b = random.randint(0,100), random.randint(0,100)
hist = [[f"What is {a}+{b}?\n" * 250], f"It's {a+b}", ['hi'], "Hello"]In this first api call we will see cache creation until the last user msg:
sleep(5)
chat = AsyncChat(ms[3], cache=True, hist=hist)
rs = await chat('hi again', stream=True, stream_options={"include_usage": True})
async for o in rs:
if isinstance(o, ModelResponse): print(o.usage)Usage(completion_tokens=13, prompt_tokens=2026, total_tokens=2039, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=0, text_tokens=None, image_tokens=None, cache_creation_tokens=2023), cache_creation_input_tokens=2023, cache_read_input_tokens=0)
test_eq(o.usage.cache_creation_input_tokens > 1000, True)
test_eq(o.usage.cache_read_input_tokens, 0)hist.extend([['hi again'], 'how may i help you?'])
chat = AsyncChat(ms[3], cache=True, hist=hist)
rs = await chat('bye!', stream=True, stream_options={"include_usage": True})
async for o in rs:
if isinstance(o, ModelResponse): print(o.usage)Usage(completion_tokens=17, prompt_tokens=2040, total_tokens=2057, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=2023, text_tokens=None, image_tokens=None, cache_creation_tokens=14), cache_creation_input_tokens=14, cache_read_input_tokens=2023)
test_eq(o.usage.cache_read_input_tokens > 1000, True)The subsequent call should re-use the existing cache:
Gemini
Gemini implicit caching supports partial token matches. The usage metadata only shows cache hits with the cached_tokens field. So, to view them we need to run completions at least twice.
Testing with gemini-2.5-flash until gemini-3-pro-preview is more reliable
chat = AsyncChat(ms[2], cache=True, hist=hist)
rs = await chat('hi again', stream=True, stream_options={"include_usage": True})
async for o in rs:
if isinstance(o, ModelResponse): print(o.usage)Usage(completion_tokens=69, prompt_tokens=2525, total_tokens=2594, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=59, rejected_prediction_tokens=None, text_tokens=10, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None, text_tokens=2525, image_tokens=None))
Running the same completion again:
sleep(5) # it takes a while for cached tokens to be avail.
chat = AsyncChat(ms[2], cache=True, hist=hist)
rs = await chat('hi again', stream=True, stream_options={"include_usage": True})
async for o in rs:
if isinstance(o, ModelResponse): print(o.usage)Usage(completion_tokens=62, prompt_tokens=2525, total_tokens=2587, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=52, rejected_prediction_tokens=None, text_tokens=10, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=2011, text_tokens=514, image_tokens=None))
test_eq(o.usage.prompt_tokens_details.cached_tokens > 1800, True)hist.extend([['hi again'], 'how may i help you?'])
chat = AsyncChat(ms[2], cache=True, hist=hist)
rs = await chat('bye!', stream=True, stream_options={"include_usage": True})
async for o in rs:
if isinstance(o, ModelResponse): print(o.usage)Usage(completion_tokens=7, prompt_tokens=2535, total_tokens=2542, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=0, rejected_prediction_tokens=None, text_tokens=None, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=2005, text_tokens=530, image_tokens=None))
test_eq(o.usage.prompt_tokens_details.cached_tokens > 1800, True)Let’s modify the cached content and see that partial matching works:
c = hist[0][0]
hist[0][0] = c[:int(len(c)*0.75)] + " Some extra text"
hist.extend([['hi again'], 'how may i help you?'])
chat = AsyncChat(ms[2], cache=True, hist=hist)
rs = await chat('bye!', stream=True, stream_options={"include_usage": True})
async for o in rs:
if isinstance(o, ModelResponse): print(o.usage)Usage(completion_tokens=32, prompt_tokens=1920, total_tokens=1952, completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=25, rejected_prediction_tokens=None, text_tokens=7, image_tokens=None), prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=991, text_tokens=929, image_tokens=None))
test_eq(o.usage.prompt_tokens_details.cached_tokens > 900, True)